4 marks

Solve the following equation algebraically over the interval $[0, 2\pi]$.

$$\cos 2\theta - 3\sin \theta - 2 = 0$$

$$1 - 2\sin \theta - 3\sin \theta - 2 = 0$$

$$2\sin^2 \theta + 3\sin \theta + 1 = 0$$

$$(2\sin \theta + 1) (\sin \theta + 1) = 0$$

$$\sin \theta = -\frac{1}{2} \qquad \sin \theta = -1$$

$$\sin \theta = -\frac{1}{2} \qquad \sin \theta = -1$$
January 2015
$$\theta = \frac{2\pi}{6}, \text{ u.t.}, \text{ 3.t.}$$
Question 7

4 marks

Solve the following equation algebraically for x, where $0 \le x \le 2\pi$.

$$2\cos^{2}x = -3\sin x$$

$$2\left(1-\sin^{2}x\right) = -3\sin x$$

$$2 - 2\sin^{2}x = -3\sin x$$

$$0 = 2\sin^{2}x - 3\sin x - 2$$

$$0 = (2\sin x + 1)(\sin x - 2)$$

$$\sin x = -\frac{1}{2}$$

$$\sin x = -\frac{1}{2}$$

$$\cos^{2}x = -3\sin x$$

$$0 = 3\sin^{2}x$$

$$1 = 3\sin^{2}x$$

$$1$$

Explain the error that was made when solving the following equation:

 $\sin 2\theta = \cos \theta$, where $\theta \in \mathbb{R}$

$$sin 2\theta = cos \theta$$

 $asin 2 cos \theta = cos \theta$
 $asin 2 cos \theta = cos \theta$
 $asin 3 cos \theta = cos \theta$
 $asin 3 = cos \theta = cos \theta$
 $asin 3 = 1$
 $asin 3 = 1$

Solve the following equation over the interval $[0, 2\pi]$.

$$2\cos 2\theta - 1 = 0$$

$$2\left(1 - a\sin^2\theta\right) - 1 = 0$$

$$2 - 4\sin^2\theta - 1 = 0$$

$$-4\sin^2\theta + 1 = 0$$

$$\sin^2\theta = \pm \frac{1}{4}$$

$$\sin^2\theta = \pm \frac{1}{2}$$

$$\theta = \frac{\pi}{6}, \quad \frac{\pi}{6}, \quad \frac{\pi}{6}, \quad \frac{\pi}{6}$$

June 2013

Question 7

4 marks

Solve the following equation algebraically where $180^{\circ} \le \theta \le 360^{\circ}$.

$$2\sin^{2}\theta + 5\cos\theta + 1 = 0$$

$$2(1-\cos^{2}\theta) + 5\cos\theta + 1 = 0$$

$$2 - 2\cos^{2}\theta + 5\cos\theta + 1 = 0$$

$$2\cos^{2}\theta - 5\cos\theta + 1 = 0$$

$$2\cos^{2}\theta - 5\cos\theta - 3 = 0$$

$$\cos^{2}\theta - 3\cos^{2}\theta - 3\cos^{2}\theta$$