Explain how the value of n affects the behaviour of the graph of the polynomial function $p(x)=(x+3)(x-1)^{n}$, as $p(x)$ approaches the x-intercept at $x=1$.

- If $n=1$ the graph will cross thought $x=1$ - If n is odd and greater than 1 the graph will level off as it crosses the x-ass
- If n is even the gremph will bounce off the Question 19

Identify the graph of the function $f(x)=-(x-2)(x-1)^{2}(x+1)$.

$$
\begin{aligned}
& \text { th } \\
& \text { degree }
\end{aligned}
$$

a)

b)

negative leading coefficient
c)

Determine the equation of the polynomial function represented by the graph.

$$
\begin{aligned}
& y=a(x+3)(x-2)^{2} \\
& \text { Find }=\text { Subs. }(0,24)
\end{aligned}
$$

$$
\begin{aligned}
& 24=a(0+3)(0-2)^{2} \\
& 24=a(3)(4) \\
& 24=12 a \\
& \frac{24}{13}=a \\
& 2=a
\end{aligned}
$$

$$
p(x)=2(x+3)(x-2)^{2}
$$

Question 39
a) 2 marks
b) 1 mark
c) 1 mark

Christine dives off a diving board.
Her dive is modelled by the function $h(t)=t^{3}-3 t^{2}-t+3$, where h is her height in metres, relative to the water surface and t is the time in seconds after diving off the diving board.
a) Given that $(t+1)$ is a factor for the function $h(t)$, determine the other factors.

| -1 | $\left.\begin{array}{rrrr}1 & -3 & -1 & 3 \\ -1 & 4 & -3 \\ 1 & -4 & 3 & 0\end{array}\right]$ |
| :--- | :--- | ---: | ---: | ---: |

$$
h(t)=(t+1)\left(t^{2}-4 t+3\right)
$$

$$
\begin{aligned}
& \text { are } \\
& (t-3) \text { and } \\
& (t-1)
\end{aligned}
$$

b) Sketch the graph of the function $h(t)$ for the time interval $t=0$ to $t=3$.

$$
\begin{gathered}
\text { naker }=a \\
\text { when } t=0 \\
h(0)=3
\end{gathered}
$$

c) Determine how many seconds Christine is underwater.

$$
2 \text { seconds }
$$

$$
\text { from } 1 \mathrm{sec} \rightarrow 3 \mathrm{sec} \text {. }
$$

Question 9
Is $(x-2)$ a factor of the polynomial $p(x)=-x^{4}-3 x^{3}+11 x^{2}+3 x-10$?
Justify your response.

$$
\begin{aligned}
p(z) & =-(2)^{4}-3(2)^{3}+11(2)^{2}+3(2)-10 \\
& =-16-3(8)+11(4)+6-10 \\
& =-16-24+44-4 \\
& =0 \quad(x-2) \text { is a faeroe }
\end{aligned}
$$

Question 13 Since $P(z)=0$ the factor theorem states 1 mark of $P(x)$
Explain how the end behaviours of the graphs of polynomial functions with an even degree and with an odd degree are different.

Even degree polynomials. go up into Q I and II

$$
\text { or down into } Q \text { TI and V }
$$

While odd degree polynomials either go doun into QII and up unto Q I
or upinto $Q \mathbb{L}$ and down into QIV

What is the degree of the polynomial function represented by the graph below?
a) 2
b) 3
c) 4
d) 5

Question 27
2 marks

Determine all of the zeroes of the function $p(x)=x^{3}-5 x^{2}-2 x+24$, given one of the factors	of $p(x)$ is $(x-3)$.	3	$1-5-24$	$0=(x-3)\left(x^{2}-2 x-8\right)$

$$
0=(x-3)(x-4)(x+2)
$$ Question 33

$$
x=3,4,-2
$$

3 marks
Sketch the graph of $y=-2(x-1)(x-3)(x+1)$.

$$
\text { yint: } \begin{aligned}
\quad y & =-2(-1)(-3)(1) \\
y & =-6
\end{aligned}
$$

Question 8
a) 1 mark
b) 1 mark

$$
\text { Let } P(x)=
$$

a) Determine the remainder when $x^{4}-3 x^{2}+1$ is divided by $x+2$.

$$
\begin{aligned}
p(-2) & =(-2)^{4}-3(-2)^{2}+1 \\
& =16-3(4)+1 \\
& =5
\end{aligned}
$$

2 marks
Question 16
Divide $\left(x^{3}-5 x-4\right)$ by $(x+1)$.

A sheet of paper 12 cm long and 8 cm wide is used to make a box with no lid. Equal squares of side length $x \mathrm{~cm}$ are cut from each of the comers and the sides are folded up to make the box.

Which of the following expresses the volume of the box?
a) $\mathrm{V}(x)=x(12+x)(8+x)$
b) $\mathrm{V}(x)=x(12-x)(8-x)$
c) $\mathrm{V}(x)=x(12+2 x)(8+2 x)$
d) $\mathrm{V}(x)=x(12-2 x)(8-2 x)$

Write the equation for $f(x)$ that satisfies all of the following conditions:

- $f(x)$ is a polynomial function of degree 4
- $f(x)$ has a zero at 2 with a multiplicity of 3
- $f(x)$ has a zero at -5

$$
\begin{aligned}
& y=a(x+5)(x-2)^{3} \\
& 80=a(5)(-8) \\
& -2=a
\end{aligned}
$$

- $f(x)$ has a y-intercept of 80

Question 45
Sketch the graph of $f(x)=(x-1)^{2}(x+2)^{3}$.
Label the x-intercepts and the y-intercept.
giant:

$$
\begin{aligned}
f(\theta) & =(-1)^{2}(+2)^{3} \\
& =8
\end{aligned}
$$

Given the above graph of a polynomial function, which one of the following statements can be true?
a) The function has a degree of 4 with a positive leading coefficient.
b) The function has a degree of 4 with a negative leading coefficient.
c) The function has a degree of 3 with a positive leading coefficient.
d) The function has a degree of 3 with a negative leading coefficient.

Given that $(x+3)$ is a factor of polynomial $P(x)$, which of the following is true?
a) $P(-3)=0$
b) $P(0)=-3$
c) $P(0)=3$
d) $P(3)=0$

One of the factors of $P(x)=x^{3}-k x^{2}-7 x+10$ is $(x-2)$.

$$
P(+2)=0
$$

Find the value of $k . \quad O=(+2)^{3}-k(+2)^{2}-7(+2)+10$

$$
0=+8-4 k-14+60
$$

$$
-4=-4 k
$$

Question 35 $=K$

When $P(x)$ is divided by $x-3$, it has a quotient of $2 x^{2}+x-6$ and a remainder of 4 .
Determine $P(x)$.

$$
\begin{aligned}
& \frac{P(x)}{x-3}=2 x^{2}+x-6+\frac{4}{x-3} \\
& P(x)=\left(2 x^{2}+x-6\right)(x-3)+4
\end{aligned}
$$

Sketch the graph of $y=x^{3}+x^{2}-5 x+3$ given that one of the x-intercepts is 1 .
Identify the x-intercepts and y-intercept.

June 2013
Question $24 \quad 1$ mark

What is the degree of the polynomial represented below?
a) 2
b) 3
(c) 4
d) 5

Sketch the graph of:

$$
f(x)=(2-x)(x+3)(x+1)^{2}
$$

Label the x-intercepts and y-intercept.

The graph below represents the equation $y=a x^{3}+6 x^{2}+5 x-10$.

What must be true about the value of a ? Explain your reasoning.
a is negative, since the end behavior is up into $Q \mathbb{K}$ and down into $Q \mathbb{I V}$

Question 35

Given that $(x-1)$ is one of the factors, express $x^{3}-57 x+56$ as a product of factors.

1	1	0	-57	56
	1	1	-56	
	1	1	-56	0

$$
\begin{aligned}
& (x-1)\left(x^{2}+x-56\right) \\
& (x-1)(x+8)(x-7)
\end{aligned}
$$

Question 44

2 marks

Is $(x-3)$ a factor of $x^{4}-x^{3}-3 x^{2}+x-1$?
Justify your answer.
Let $P(x)=x^{4}-x^{3}-3 x^{2}+x-1$

$$
p(3)=3^{4}-3^{3}-3(3)^{2}+3-1
$$

$$
=81-27-27+3-1
$$

$$
=29
$$

Sine $P(3) \neq 0 \quad(x-3)$ is not a factor

$$
\text { of } p(x)
$$

Sketch the graph of $y=(x+1)(x-2)^{2}(x+5)$.
Identify the x-intercepts and y-intercept.

$$
x \text {-intercepts: }-5,-1,2
$$

y-intercept: \qquad

$$
\begin{aligned}
& y=(1)(-2)^{2}(5) \\
& y=20
\end{aligned}
$$

A box in the shape of a rectangular prism has side lengths $x, x+2$. and $x+10$.
Write a function, $V(x)$, to express the volume of the box in terms of x.
Find all possible values of x, given that the volume of the box is $96 \mathrm{~cm}^{3}$.
State the dimensions of the box.

Given that $h(x)=2 x^{2}+5 x-3$ and that $h(x)=f(x) \cdot g(x)$. determine $f(x)$ and $g(x)$.

$$
\begin{aligned}
& h(x)=(2 x-1)(x+3) \\
& f(x)=(2 x-1) \\
& g(x)=(x+3)
\end{aligned}\left\{\begin{array}{l}
\text { Also } \\
f(x)=2 x^{2}+5 x-3 \\
g(x)=1
\end{array}\right.
$$

Question 47
1 mark

If $p(x)=x^{5}-12 x+1$. determine the remainder when $p(x)$ is divided by $(x+2)$.

$$
\begin{array}{rlr}
p(-2) & =(-2)^{5}-12(-2)+1 & \\
& =-32+24+1 & \text { Remeri~de } \\
& =-8+1 & -7 . \\
& =-7 &
\end{array}
$$

