Date: Answer key

OUTCOME R6 - Review

- 1. a) Without graphing, **explain** if the inverse of g(x) would be a **function**.
- La No, the inverse of g(x) would not represent a function because g(x) does not pass the horizontal line test

b) Determine the **domain** and **range** of the **inverse** of g(x)

Domain: [0,12]

Range: [-2,6]

2. Sketch the graph of the **inverse** of each of the following. State any **invariant point(s)**, if they exist.

3. The points (-3,7), (0,5), (3,3), and (6,1) are all located on the graph of f(x). Determine the corresponding points that would be located on the graph of the inverse of f(x).

$$(7,-3)$$
, $(5,0)$, $(3,3)$ and $(1,6)$

4. Determine, algebraically, the equation of the inverse of the given function $f(x) = -\frac{2}{3}x + 5$. Does its inverse represent a **function**?

$$y = -\frac{2}{3}x + 5$$

 $x = -\frac{2}{3}y + 5$

$$-\frac{3}{2}(x-5) = y$$

$$-\frac{3}{2}X + \frac{15}{2} = 4$$

- Hes, $y = -\frac{3}{2}x + \frac{15}{2}$ represents a function.
- 5. Determine, algebraically, the equation of the inverse of the function $f(x) = (x+3)^2 - 1.$

Restrict the domain of f(x) so that its inverse represents a function.

$$y = (x+3)^2 - 1$$

 $X = (y+3)^2 - 1$

$$X+1 = (y+3)^2$$

 $\pm \sqrt{X+1} = y+3$

1> Restrict domain of f(x) to

6. The graph of a relation and its inverse are reflected over the line

7. Given the graph of f(x) below, reflect the graph of f(x) over the line y = x. State the **domain** and **range** for both graphs.

	f(x)	Inverse
D	[-8,-2]	[2,5]
R	[2,5]	[-8,-2]

	f(x)	Inverse
D	04X49	44×48
R	4 = 4 = 8	0 = 4 = 9

-6-

-8-

	f(x)	Inverse
D	[-5,5]	[-2,6]
R	[-2,6]	[-5,5]

	f(x)	Inverse
D	-2 = X = 5	0=X=6
R	0 = 4 = 6	-2 × y < 5