Grade 12
Pre-Calculus Mathematics Achievement Test

Marking Guide

January 2018

A group of 7 friends decide to go to a movie.
Determine how many ways the friends can sit in a row if two of the friends refuse to sit next to each other.

Solution

$7!-6!2!=3600$ ways $\quad$$1 / 2$ mark for $7!$ 1 mark for product of $6!2!$ $(1 / 2$ mark for $6!, 1 / 2$ mark for $2!)$ $1 / 2$ mark for subtraction	
	2 marks

Gabrielle listens to her radio at a sound level of 80 dB . She attended a music concert that had a sound level of 115 dB . Determine how many times more intense the music concert was than the radio.

You may use the formula:

$$
\beta=10 \log \left(\frac{I}{I_{0}}\right)
$$

where β is the intensity level of sound, measured in dB
I is the intensity of sound
I_{0} is the standard minimum intensity that a person can hear

Solution

Radio:

$$
\begin{array}{ll}
80=10 \log \left(\frac{I}{I_{0}}\right) & 115=10 \log \left(\frac{I}{I_{0}}\right) \\
8=\log \left(\frac{I}{I_{0}}\right) & 11.5=\log \left(\frac{I}{I_{0}}\right) \\
10^{8}=\frac{I}{I_{0}} & 1 / 2 \text { mark for exponential form } \\
10^{11.5}=\frac{I}{I_{0}} \\
10^{8} I_{0}=I & 10^{11.5} I_{0}=I
\end{array}
$$

$$
\frac{\text { intensity of music concert }}{\text { intensity of radio }}=\frac{10^{11.5} I_{0}}{10^{8} I_{0}}
$$

$$
=10^{3.5}
$$

$$
=3162.27766
$$

$$
=3162.278
$$

Solve, algebraically.

$$
2(7)^{x}=3^{2 x-3}
$$

Solution

$$
\log \left(2\left(7^{x}\right)\right)=\log 3^{2 x-3}
$$

$\log 2+x \log 7=(2 x-3) \log 3$
$\log 2+x \log 7=2 x \log 3-3 \log 3$
$\log 2+3 \log 3=2 x \log 3-x \log 7$
$\log 2+3 \log 3=x(2 \log 3-\log 7)$
$\frac{\log 2+3 \log 3}{2 \log 3-\log 7}=x$
$15.872483=x$

$$
15.872=x
$$

$1 / 2$ mark for applying logarithms
1 mark for product law
1 mark for power law
$1 / 2$ mark for collecting terms with x
$1 / 2$ mark for isolating x
$1 / 2$ mark for evaluating quotient of logarithms
4 marks

Solve for θ, algebraically, over the interval $[0,2 \pi]$.

$$
\csc ^{2} \theta+2 \csc \theta-8=0
$$

Solution

$$
\begin{aligned}
& (\csc \theta+4)(\csc \theta-2)=0 \\
& \csc \theta=-4 \quad \csc \theta=2 \quad 1 \text { mark for solving for } \csc \theta \\
& \sin \theta=-\frac{1}{4} \quad \sin \theta=\frac{1}{2} \quad 1 \text { mark for reciprocal } \\
& \theta_{r}=0.252680 \\
& \theta=3.394 \quad \theta=\frac{\pi}{6}, \frac{5 \pi}{6} \\
& \theta=6.031 \\
& \text { or } \\
& \theta=3.394 \quad \theta=0.524 \\
& \theta=6.031 \quad \theta=2.618
\end{aligned}
$$

You have forgotten the code to unlock your cell phone. You know the code is made up of four numbers from 0 to 9 .

Determine the number of possible codes, if repetition is allowed.

Solution

$$
\underline{10} \cdot \underline{10} \cdot \underline{10} \cdot \underline{10}=10000
$$

1 mark

In the binomial expansion of $\left(\frac{7}{x^{3}}-3 x^{7}\right)^{n}$, the $5^{\text {th }}$ term contains x^{7}.
Determine the value of n.

Solution

$$
\begin{aligned}
x^{7} & =\left(\frac{1}{x^{3}}\right)^{n-4}\left(x^{7}\right)^{4} & & \begin{array}{l}
1 \text { mark for } k=4 \\
1 / 2 \text { mark for substitution }
\end{array} \\
x^{7} & =\left(x^{-3}\right)^{n-4}\left(x^{7}\right)^{4} & & \\
x^{7} & =x^{-3 n+12+28} & & \\
7 & =-3 n+40 & & \\
-33 & =-3 n & & \\
11 & =n & & 2 \text { marks }
\end{aligned}
$$

Given the domain of $f(x)$ is $\{-6,1,3,4\}$ and the range of $f(x)$ is $\{-4,7,10,15\}$, state the domain of $f^{-1}(x)$.

Solution

Given the graph of $y=f(x)$, sketch the graph of its inverse.

Solution

1 mark

Prove the following identity for all permissible values of θ.

$$
\frac{1+\cos \theta}{1-\sin ^{2} \theta}=\sec \theta+\tan ^{2} \theta+1
$$

Solution

Method 1

Left-Hand Side	Right-Hand Side
$\frac{1+\cos \theta}{1-\sin ^{2} \theta}$ $\sec \theta+\tan ^{2} \theta+1$ $\frac{1+\cos \theta}{\cos ^{2} \theta}$ 1 mark for algebraic strategies $\frac{1}{\cos ^{2} \theta}+\frac{1}{\cos \theta}$ 1 mark for logical process to prove the identity $\sec ^{2} \theta+\sec \theta$ 1 mark for correct substitution of appropriate identities $\tan ^{2} \theta+1+\sec \theta$ 3 marks	

Solution

Method 2

Left-Hand Side	Right-Hand Side	
$\frac{1+\cos \theta}{\cos ^{2} \theta}$	$\frac{1}{\cos \theta}+\sec ^{2} \theta$	
	$\frac{1}{\cos \theta}+\frac{1}{\cos ^{2} \theta}$	1 mark for algebraic strategies
	$\frac{\cos \theta+1}{\cos ^{2} \theta}$	1 mark for logical process to prove the identity
		1 mark for correct substitution of appropriate identities
		3 marks

Thomas used graphs to solve the equation $e^{x+2}=\sqrt{-(x+1)}$.

He incorrectly states the solution as $(-2,1)$.

Describe how Thomas should have stated the solution.

Solution

He stated his solution as a coordinate point; his solution should have only been the value of x.

1 mark

Given the graph of $y=f(x)$, sketch the graph of $y=\sqrt{f(x)}$.

Solution

1 mark for restricting domain
$1 / 2$ mark for shape between both pairs of invariant points
$1 / 2$ mark for shape above both pairs of invariant points

2 marks

When a polynomial, $P(x)$, is divided by $(x-2)$ the resulting equation is $\frac{P(x)}{x-2}=x^{2}-x+1+\frac{3}{x-2}$.
a) Explain why $x-2$ is not a factor of $P(x)$.
b) Determine the equation for the polynomial function $P(x)$.

Solution

a) There is a remainder when $P(x)$ is divided by $x-2$.

b) $P(x)=(x-2)\left(x^{2}-x+1\right)+3$

$$
\begin{gathered}
\text { or } \\
P(x)=x^{3}-3 x^{2}+3 x+1
\end{gathered}
$$

Determine the equation for $g(x)$ in terms of $f(x)$.

Solution

$g(x)=-f(x-1)+3 \quad 1$ mark for vertical reflection
1 mark for horizontal translation
1 mark for vertical translation

3 marks

Explain why the binomial expansion of $(2 x+y)^{9}$ does not have a middle term.

Solution

The expansion contains $n+1$ terms. Since n equals 9, there are 10 terms, which would not allow for a middle term.

$$
1 \text { mark }
$$

Using the laws of logarithms, completely expand the expression $\log \left(\frac{5 \sqrt{a}}{b^{3}}\right)$.

Solution

$$
\begin{array}{ll}
\log 5+\frac{1}{2} \log a-3 \log b & \begin{array}{l}
1 \text { mark for product law } \\
1 \text { mark for power law }(1 / 2 \text { mark for each }) \\
1 \text { mark for quotient law }
\end{array} \\
& \mathbf{3} \text { marks }
\end{array}
$$

Answer Key for Selected Response Questions

Question	Answer	Learning Outcome
16	D	T 1
17	B	R 12
18	A	R 7
19	C	T 1
20	D	P 2
21	B	R 14
22	B	R 3
24	C	T6
A	R9	

Evaluate the following expression.

$$
\tan \left(\frac{2 \pi}{3}\right) \csc \left(\frac{-2 \pi}{3}\right)+\cos (3 \pi)
$$

Solution

$(-\sqrt{3})\left(-\frac{2}{\sqrt{3}}\right)+(-1)$	1 mark for $\tan \left(\frac{2 \pi}{3}\right)(1 / 2$ mark for quadrant, $1 / 2$ mark for value $)$
$2-1$	1 mark for $\csc \left(-\frac{2 \pi}{3}\right)(1 / 2$ mark for quadrant, $1 / 2$ mark for value $)$
1	1 mark for $\cos (3 \pi)$
	3 marks

State the range of the graph below.

Solution

Range: $\quad\{y \in \mathbb{R}, y \neq 0$ and $y \neq 1\} \quad 1$ mark ($1 / 2$ mark for $y \neq 0,1 / 2$ mark for $y \neq 1$)
1 mark

Sketch the graph of the function $f(x)=\frac{2 x^{2}-5 x}{x}$.

Solution

State a possible value of n if the polynomial function $P(x)=(x-1)^{2}(x+2)^{n}$ has a range of $[0, \infty)$.

Solution

$n=2$

1 mark

Note(s):

- Accept any even positive value of n, including zero.

Sketch the graph of $y=\left(\frac{1}{2}\right)^{x-1}$.

Solution

Solve.

$$
\log _{x} 27=3
$$

Solution

$\begin{aligned} & x^{3}=27 \\ & x=3\end{aligned} \quad 1$ mark for exponential form

Sketch at least two periods of the graph $y=\tan x$.

Solution

1 mark for increasing trigonometric function
1 mark for asymptotic behaviour approaching $x=\frac{\pi}{2}+k \pi, k \in \mathbb{Z}$
2 marks

