Question 32 R1

Given the graph of f(x), state the domain of $\frac{1}{f(x)}$.

Solution

Domain: $\{x \in \mathbb{R}, x \neq \pm 2\}$

1 mark ($\frac{1}{2}$ mark for $x \neq 2$, $\frac{1}{2}$ mark for $x \neq -2$)

Question 33 T4

Determine the values of A, B, and D of the sinusoidal function in the form $y = A \sin(Bx) + D$.

Solution

$$A = \underline{\qquad \qquad 2}$$

1 mark for A

$$\mathbf{B} = \frac{1}{5}$$

1 mark for B

1 mark for D

Question 34 T2

Determine if the point $\left(-\frac{\sqrt{7}}{5}, \frac{2}{5}\right)$ is on the unit circle.

Justify your answer.

Solution

$$x^{2} + y^{2} = 1$$
Left-hand side
$$= \left(-\frac{\sqrt{7}}{5}\right)^{2} + \left(\frac{2}{5}\right)^{2}$$

$$= \frac{7}{25} + \frac{4}{25}$$

$$= \frac{11}{25}$$

$$\frac{11}{25} \neq 1$$

∴ not on the unit circle

1 mark for justification

Solve, algebraically.

$$\frac{{}_{n}C_{5}}{{}_{n}C_{4}} = 6$$

Solution

$$\frac{\frac{n!}{(n-5)!5!}}{\frac{n!}{(n-4)!4!}} = 6$$

½ mark for substitution into equation

$$\frac{n!(n-4)!4!}{n!(n-5)!5!} = 6$$

$$\frac{n!(n-4)(n-5)!\cancel{A!}}{n!(n-5)!\cancel{5}\cdot\cancel{A!}} = 6$$

1 mark for factorial expansion

(½ mark for numerical factors; ½ mark for factors with variables) 1 mark for simplification of factorials

 $\frac{n-4}{5} = 6$

(½ mark for numerical factors; ½ mark for factors with variables)

n - 4 = 30

n = 34

 $\frac{1}{2}$ mark for solving for n

Given $\sin \alpha = \frac{4}{5}$, where α is in quadrant II, determine the exact value of $\sin 2\alpha$.

Solution

$$x^{2} + y^{2} = r^{2}$$

$$x^{2} + 16 = 25$$

$$x^{2} = 9$$

$$x = \pm 3$$

$$x = -3$$

$$\cos\alpha = -\frac{3}{5}$$

 $\frac{1}{2}$ mark for value of x $\frac{1}{2}$ mark for $\cos \alpha$

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$
$$= 2\left(\frac{4}{5}\right)\left(-\frac{3}{5}\right)$$
$$= -\frac{24}{25}$$

1 mark for substitution into correct identity

2 marks

Note(s):

• Accept any of the following values for $x : x = \pm 3$; x = -3; or x = 3.

Given the functions f(x) = x + 1 and $g(x) = \sqrt{x}$,

- a) determine the equation of g(f(x)).
- b) sketch the graph of g(f(x)).

Solution

a) $g(f(x)) = \sqrt{x+1}$

1 mark

b)

1 mark for domain of g(f(x))

1 mark for shape consistent with g(f(x))

Question 38 T4

Steve is asked to determine an equation with a larger period than the period of the graph of $y = \cos(2x)$.

Justify why Steve's answer of $y = \cos(6x)$ is incorrect.

Solution

Steve's equation needs to have a value of |b| less than 2.

1 mark

or

Steve's graph would have a period of $\frac{2\pi}{6} = \frac{\pi}{3}$, which is smaller than $\frac{2\pi}{2} = \pi$, the period of the given graph.

Question 39 R1

Given the graphs of f(x) and g(x),

- a) determine the value of $(f \cdot g)(-1)$.
- b) determine the value of g(f(0)).

Solution

a)
$$(f \cdot g)(-1) = (-1)(4)$$

= -4

1 mark for value of $(f \cdot g)(-1)$

1 mark

$$b) \quad f(0) = 1$$

$$g(f(0)) = 2$$

$$\frac{1}{2}$$
 mark for $f(0)$

$$\frac{1}{2}$$
 mark for $g(f(0))$ consistent with $f(0)$ value

Question 40 R12

Sketch the graph of $P(x) = -(x-1)^3 (x-3)(x+1)$.

Solution

1 mark for *x*-intercepts

½ mark for y-intercept

1 mark for multiplicity (degree 3 at x = 1)

½ mark for end behaviour

The point $(-\sqrt{3},1)$ is on the terminal arm of an angle θ , in standard position.

- a) Determine $\tan \theta$.
- b) Determine a possible value of θ , in radians.

Solution

a)
$$\tan \theta = -\frac{1}{\sqrt{3}}$$

b)
$$\theta = \frac{5\pi}{6}$$

Question 42 R6

Describe the transformation used to obtain the graph of $y = \log_5 x$ given the graph of $y = 5^x$.

Solution

The graph of $y = \log_5 x$ is obtained by reflecting the graph of $y = 5^x$ over the line y = x.

or

1 mark

The graph of $y = \log_5 x$ is the inverse of $y = 5^x$.

Question 43

T5

Solve $\sin \theta = -\frac{\sqrt{3}}{2}$, where $\theta \in \mathbb{R}$.

Solution

$$\theta = \frac{4\pi}{3}, \, \frac{5\pi}{3}$$

 $\theta = \begin{cases} \frac{4\pi}{3} + 2k\pi, \ k \in \mathbb{Z} \\ \frac{5\pi}{3} + 2k\pi, \ k \in \mathbb{Z} \end{cases}$

1 mark for values of θ (½ mark for each value)

1 mark for general solution

2 marks

or

$$\theta = 240^{\circ}, 300^{\circ}$$

$$\theta = \begin{cases} 240^\circ + 360^\circ k, \ k \in \mathbb{Z} \\ 300^\circ + 360^\circ k, \ k \in \mathbb{Z} \end{cases}$$

Question 44 R13

Given that the point (a,b) is on the graph of f(x), describe how you would determine the corresponding point on the graph of $y = \sqrt{f(x)}$.

Solution

The value of a stays the same, square root the value of b.

Question 45 T6

Evaluate.

$$\cos\left(\frac{\pi}{20}\right)\cos\left(\frac{\pi}{5}\right) - \sin\left(\frac{\pi}{20}\right)\sin\left(\frac{\pi}{5}\right)$$

Solution

$$\cos\left(\frac{\pi}{20} + \frac{\pi}{5}\right)$$

½ mark for substitution of an appropriate identity

$$\cos\left(\frac{\pi}{20} + \frac{4\pi}{20}\right)$$

$$\cos\left(\frac{5\pi}{20}\right)$$

$$\cos\left(\frac{\pi}{4}\right)$$

$$\frac{\sqrt{2}}{2}$$

½ mark for exact value

Question 46 R2, R5

Describe the transformations used to obtain the graph of the function y = f(-x+6)-8 from the graph of y = f(x).

Solution

Reflect the graph of y = f(x) over the y-axis and then translate 6 units right and 8 units down.

1 mark for horizontal reflection

1 mark for horizontal translation

1 mark for vertical translation

3 marks

Note(s):

Deduct 1 mark if correct transformations are given in the wrong order.

State the equations of all the asymptotes of the function, $y = \frac{1}{3x+1}$.

Solution

$$y = 0$$

1 mark for horizontal asymptote

$$x = -\frac{1}{3}$$

1 mark for vertical asymptote

Determine the zeros of the polynomial function $P(x) = 2x^3 + 5x^2 - 4x - 3$.

Solution

$$P(1) = 2(1)^3 + 5(1)^2 - 4(1) - 3$$
 1 mark for identifying one possible value of x

$$P(1) = 0$$

(x-1) is a factor

1 mark for synthetic division (or for any equivalent strategy)

$$P(x) = (x-1)(2x^2 + 7x + 3)$$

½ mark for consistent factors

$$0 = (x-1)(2x+1)(x+3)$$
$$x = 1 x = -\frac{1}{2} x = -3$$

½ mark for all zeros

Question 49 R13

Determine the equation of the radical function represented by the graph.

Solution

 $y = 2\sqrt{x} + 3$

1 mark for vertical stretch 1 mark for vertical translation

01

$$y = \sqrt{4x} + 3$$

1 mark for horizontal stretch 1 mark for vertical translation