

MPC40S
Date: \qquad

\qquad
Chapter 3: POLYNOMIAL FUNCTIONS
3.4 - Equations and Graphs of Polynomial Functions

Example \#1
xintercepts
a) Determine the zeroes of the following cubic function

$$
\begin{aligned}
& f(x)=x^{3}-x^{2}-4 x+4 \\
& 0=x^{3}-x^{2}-4 x+4 \\
& 0=(x-1)(x-2)(x+2) \\
& \text { xints: } 1,2,-2
\end{aligned}
$$

b) Determine the y - intercept of the function

$$
\begin{aligned}
\operatorname{set} x & =0 \\
f(0) & =0^{3}-0^{2}-4(0)+4
\end{aligned}
$$

$$
=4
$$

c) Summarize what we know about this function

\qquad

Multiplicity of a Zero

If $P(x)$ has a factor $(x-a)$ that is repeated n times, we say that $x=a$ is a zero of multiplicity n.

For example:

$$
y=(x+1)^{2}(x-2)(x-4)^{3} \quad\left\{\begin{array}{l}
x=-1 \text { is a zero of multiplicity } \frac{2}{1} \\
x=2 \text { is a zero of multiplicity } \\
x=4 \text { is a zero of multiplpcity }-\frac{1}{3}
\end{array}\right.
$$

Multiplicity is the number of times the zero of a polynomial occurs. (The number of times a factor is repeated)

The shape of the graph of a function close to a zero (x - intercept) depends on its multiplicity.

Example \#2

Determine the zeroes of each polynomial function and their multiplicities from the given graphs.
a)

b)

c)

Zero	Multiplicity
-1	2
0.5	1
1	2

Zero	Multiplicity	Zero	Multiplicity
		-1	3
			Pg. \#25

\qquad

Example \#3
Sketch the following graphs:
a) $y=-(x-1)^{2}(x+2)$

Hint!
b) $y=(x)(x+2)^{3}$

Degree	Al
Leading Coefficient	positive
End Behaviour	up into QI I
Zeroes	-2 and
a -intercept	
Intervals (Sign Diagram)	

Pg. \#26
\qquad

Example \#4
Sketch the graph of $P(x)=-x^{3}+4 x^{2}+x-4 \quad P(0)=-1(-4)(-1)(1)$
a) $P(x)=-(x-4)(x-1)(x+1)$

b) $\quad P(x)=(x-1)^{2}(x+1)(x-2)^{3}$

$$
\begin{aligned}
P(0) & =(-1)^{2}(1)(-2)^{3} \\
& =1(1)(-8)
\end{aligned}
$$

\qquad

Example \#5
Determine the equation for the following polynomial function given the graph below.

Example \#6
The zeroes of a quartic function are at $-2,-1$, and 3 , with multiplicities of 1,1 , and 2 respectively.

Determine the equation of the function that satisfies this condition and passes through the point $(1,24)$.

$$
\begin{aligned}
& y=a(x+2)^{1}(x+1)^{1}(x-3)^{2} \\
& 24=a(1+2)(1+1)(1-3)^{2} \\
& 24=a(3)(2)(4) \\
& 24=24 a \quad y=(x+2)(x+1)(x-3)^{2} \\
& 1=a
\end{aligned}
$$

