Exponential and Log Graphs

June 2015

Question 33

- a) Sketch the graph of $f(x) = \log_5(x-1)$.
- b) Sketch the graph of $f^{-1}(x)$.

June 2014

Question 34

a) Sketch the graph of $f(x) = 3^{x} + 1$.

b) Sketch the graph of $f^{-1}(x)$.

2 marks

Determine the x-	intercept and y-intercept of	of $y = \log_{2}(x+4) - 1$.		
xint:	0 = log 2 (x+	-	yint: y=	$-\log_2(4) - 1$
	1 = 1092 (>	(+4)	G.	= 2 -1
	2' = x+4]	= 2 - 1 1 = 1
January 2014	$-2 = \lambda$)
Question 17			1 mark	
The graph of $y =$	$= \log_2(2x+6)$ intersects	the graph of $y = 4$ at:		4=1052(2x+6)
a) $x = -1$	b) <i>x</i> = 1	(c) $x = 5$	d) <i>x</i> = 14	$2^{4} = 2 \times + 6$ $16 = 2 \times + 6$
Question 19			1 mark	10 = 2 ×
The graph of $y = ($	$\left(\frac{1}{2}\right)^x$ compared to the graph	(=/	t	S = X
a) reflection in the	x-axis	nuerses of e	ach other '	
b) reflection in the				
c) reflection in the	e line $y = x$			
d) reciprocal funct	tion			
Question 23			1 mark	

The graph of the function f(x) shown below is best described by the equation:

4

Question 23

Which equation is represented by the graph sketched below?

a) $y = \left(\frac{1}{2}\right)^{-x}$ (b) $y = \left(\frac{1}{2}\right)^{x}$ (c) $y = 2^{x}$ (d) $y = -2^{x}$ (e) $y = -2^{x}$ (f) $y = -2^$

Question 40

a) 2 marks b) 2 marks

Question 24

1 mark

Identify the value of the x-intercept of the function $y = \ln(x-2)$. \rightarrow Shift right 2.

a) -1 b) 0 c) 2 d) 3 Algebraically $(1,0) \rightarrow (310)$. $e^{\circ} = \chi - 2$ 1+2 = x $3 = \chi$ a) Sketch the graph of $y = 3^{x}$.

b) Explain how the graph of $y = 3^x$ can be used to sketch the graph of $y = \log_3 x$.

These functions are inversess of each other. The coordinates : (xiy) on $y = 3^{\times}$ become (y, x) on $y = los_3 x$ The graph of y=3x reflects over the line y=x to obtain $y=\log_3 x$

June 2012

- 20. The range of the function $y = 2^x + 3$ is:
 - (3,∞) a)) b) (2,∞)
 - c) (0,∞)
 - d) $(-\infty, \infty)$
- 45. Sketch a clearly labelled graph of $y = \log_5(x+2)$.

- 14. Find the *y*-intercept of $f(x) = -3^{x} 2$.
 - a) y = -5(b) y = -3c) y = -2d) y = 0

18. State the equation of an asymptote for the graph of $f(x) = \ln x + 2$. Shifts $o \rho \zeta$.

 $f(0) = -3^{\circ} - 2$

= - 1 - 2

= - 3

a) y = 0(b) x = 0(c) y = 2(d) x = -2As ynptok remains x = -2

June 2011

36. State the domain for the graph of the following function:

 $y = \log_2(x+3)$ shifts left 3. (graphically). X>-3

43. Sketch a clearly labelled graph of:

June 2010

- 11. The y-intercept of $y = e^x + 3$ is:
 - a) 0
 - b) 1
 - c) 3

January 2010

(d) 4 January 2010 25. Which of the following graphs represents $y = -2^{-x}$? reflect over x and Y

* X

 $y = e^{2} + 3$ y = 1 + 3y = 4

