1. If $\log _{a} 2=x$ and $\log _{a} 5=y$, find an algebraic expression for $\log _{a}\left(\frac{\sqrt[3]{10}}{2}\right)$ in terms of x and y.
[3 marks]

$$
\begin{aligned}
& \log _{a} 0^{1 / 3}-\log _{a} 2 \\
& \frac{1}{3} \log _{a}(5 \cdot 2)-\log _{a} 2 \\
& \frac{1}{3}\left(\log _{a} 5+\log _{a} 2\right)-\log _{a} 2 \\
& \frac{1}{3} y+\frac{1}{3} x-x \\
& \frac{1}{3}(y-2 x) \text { or } \frac{1}{3} y-\frac{2}{3} x
\end{aligned}
$$

2. Solve for x algebraically. Show all steps.

$$
\begin{aligned}
& \ln \left(e^{\sqrt{x}}\right)=8 \\
& \sqrt{x} \ln e=8 \\
& \sqrt{x}=8 \\
& x=64
\end{aligned}
$$

```
* Never round early*
```

3. The population growth of a bacterial culture follows an exponential curve $y=100 e^{k t}$ as shown in the diagram.
Find the value of t_{1}, the time that the population reaches 2000.
Round your final answer to two decimal places.
[3 mark]
(1) Find k

4. The graph of the exponential function $y=a^{x}$ is shown below. State a possible value for a.
[1 mark]

$$
\begin{gathered}
\text { Any answer where } \\
0<a<1
\end{gathered}
$$

5. Solve for x :

$$
\begin{aligned}
125 & =5^{2 x-1} \\
S^{3} & =S^{2 x-1} \\
3 & =2 x-1 \\
4 & =2 x \\
2 & =x
\end{aligned}
$$

6. Find the zeros), in simplified form, of the following function:

$$
\underset{\substack{\text { exponential } \\
\text { form }}}{ } \quad\left(\begin{array}{r}
-2=\log _{2}\left(\log _{16} x\right) \\
0^{-2}
\end{array} \quad=\log x\right.
$$

$$
\begin{array}{ll}
h(x) & =\log _{2}\left(\log _{16} x\right)+2 \\
0 & =\log _{2}\left(\log _{16} x\right)+2 \\
-2 & =\log _{2}\left(\log _{16} x\right) \\
2^{-2}=\log _{16} x & {[2 \text { marks }]} \\
12^{-2}=x & \sqrt[4]{16}=x \\
16 & 2
\end{array}
$$

7. If $f(x)=5 \ln x$, find $f^{-1}(x)$.

$$
\begin{aligned}
& y=5 \ln x \\
& x=5 \ln y \\
& \frac{x}{5}=\ln y \\
& e^{x / 5}=y
\end{aligned}
$$

$$
\left\{\begin{array}{c}
\stackrel{\text { or }}{=} \ln ^{5} \\
y=\ln y^{5} \\
x=y^{5} \\
e^{x}=y \\
\sqrt[5]{e^{x}}=y
\end{array}\right.
$$

8. Solve for x , algebraically. State the answer in simplest numerical form. Show all steps.

$$
\begin{aligned}
32^{x+3}=16^{-2} & \quad \text { [3 marks] } \\
\left(2^{5}\right)^{x+3} & =\left(2^{4}\right)^{-2} \\
2^{5 x+15} & =2^{-8} \\
5 x+15 & =-8 \\
5 x & =-2 \\
x & =\frac{-23}{5}
\end{aligned}
$$

9. What is the range of the function $f(x)=2^{x}+1$?

10. Evaluate
$5^{\log _{5} 6}$
[1 mark]
11. Sketch a clearly labeled graph of $y=\ln (x-1)$, showing any intercepts and asymptotes.
[3 marks]

12. Solve for $x: \log _{2}(x-2)-\log _{2} x=3$
[3 marks]

$$
\begin{gathered}
\log _{2} \frac{(x-2)}{x}=3 \\
2^{3}=\frac{x-2}{x} \\
8 x=x-2 \\
7 x=-2 \\
x=-217
\end{gathered}
$$

Nosocution
13. The lights are left on when a car is parked. The battery discharges and the voltage, V volts, of the battery is given at any time by: $V=V_{0} e^{-k t}$
$V_{0}=12$ volts, $k=0.01$ and t is measured in minutes.
Find, to the nearest minute, the time it takes for the battery charge to reduce to 9 volts.
[3 marks]

$$
\begin{aligned}
& -0.01 t \\
& 9=12 e \\
& \frac{9}{12}=e^{-0.01 t} \\
& \ln \left(\frac{9}{12}\right)=L^{\prime} \ln e^{-0.01 t} \\
& \ln \left(\frac{9}{12}\right)=-0.01 t \ln e \\
& \ln (9112) \\
& -6.01 \\
& 28.768=t \\
& t=29 \mathrm{mins}
\end{aligned}
$$

14. State the domain of the function:

$$
f(x)=\log _{3}(x+2)
$$

$$
x>-2
$$

15. Solve for x in terms of a and b :

$$
\begin{aligned}
& e^{x}=a^{b} \\
& \ln e^{x}=\ln a^{b} \\
& x \ln e^{b}=\ln a^{b} \\
& x=\ln a^{b} \\
& \text { or mark] } \\
& x=b \ln a
\end{aligned}
$$

16. Consider the function: $y=8^{x}-2$.

Find the x-intercept of this function.

$$
\begin{aligned}
0 & =8^{x}-2 \\
2 & =8^{x} \\
2^{1} & =2^{3 x} \\
1 & =3 x \quad x=\frac{1}{3}
\end{aligned}
$$

17. If $\log _{x} 125=3$, find the exact value of x.
exp. for .

$$
\begin{aligned}
& x^{3}=125 \\
& x=5
\end{aligned}
$$

18. Solve for x. Express your answer correct to 3 decimal places

$$
\begin{aligned}
& \ln ^{-e^{x}=8^{1-x}}=\ln 8^{1-x} \\
& x \ln e=(1-x) \ln 8 \\
& x=1 \ln 8-x \ln 8 \\
& \ln 8 m= \\
& x+x \ln 8=\ln 8 \\
& x(1+\ln 8)=\ln 8
\end{aligned}
$$

19. Find the numerical value of:

$$
\begin{aligned}
& \frac{\log _{3} 9}{\log _{9} 3} \\
& \frac{2}{\frac{1}{2}} \\
& 2\binom{2}{1}=4
\end{aligned}
$$

20. If $f(x)=\log _{16} x$, find the value of $f(4)$.

$$
\begin{aligned}
& f(4)=\log _{16} 4 \\
& \left.f(4)=\frac{1}{2}\right\}
\end{aligned}
$$

note. P the are
"16 to what power goes 4"
21. If $x=e^{2 \ln 3}$ then find the value of x as a whole number.

$$
x=e^{\ln 3^{2}} \quad x=9
$$

We would change to log form.

$$
\begin{array}{r}
\ln x=\ln 9 \\
8 x=9
\end{array}
$$

22. Solve for x :

$$
\begin{aligned}
& \quad \log _{2}(2-x)=1-\log _{2}(3-x) \\
& \log _{2}(2-x)+\log _{2}(3-x)=1 \\
& \log _{2}(2-x)(3-x)=1 \\
& 2^{\prime}=(2-x)(3-x) \\
& 2=6-5 x+x^{2} \\
& 0=x^{2}-5 x+4
\end{aligned}
$$

+ we will
give you

23. An investment earns interest at an annual rate of 7% compounded semi-annually.

How long will it take, in years, for the investment to triple?
[3 marks]

$$
\begin{aligned}
A & =P\left(1+\frac{r}{n}\right)^{n t} \\
3 & =1\left(1+\frac{0.07}{2}\right)^{2 t} \\
3 & =(1.035)^{2 t^{2}} \\
\log 3 & =\log 1.035{ }^{2 t} \\
\log 3 & =2 t(\log 1.035) \\
2 \log 3_{\log 1.035}^{\log } & =t
\end{aligned}
$$

24. Solve the equation $3^{(x+1)}=4\left(5^{x}\right)$ algebraically.

Express your final answer correct to 3 decimal places.
[4 marks]

$$
\begin{aligned}
\log 3^{(x+1)} & =\log 4\left(5^{x}\right) \\
(x+1) \log 3 & =\log 4+\log 5^{x} \\
x \log 3+\log 3 & =\log 4+x \log 5 \\
x \log 3-x \log 5 & =\log 4-\log 3 \\
x(\log 3-\log 5) & =\log 4-\log 3 \\
x & =\log 4-\log 3 \\
x & =-\log 5
\end{aligned}
$$

25. If $\log _{a} 2=p$ and $\log _{a} 3=q$, find an expression for $\log _{a} 6$ in terms of p and q.

$$
\begin{gathered}
\log _{a}(2 \cdot 3) \\
\log _{a} 2+\log _{a} 3 \\
p+q
\end{gathered}
$$

26. Find $f^{-1}(x)$, if $f(x)=e^{x}$.

$$
\begin{array}{lrl}
y=e^{x} & \text { we can go } \\
x=e^{y} & \text { Straight lo } \\
\ln x=y & & y=\ln x \\
& f^{-1}(x)=\ln x
\end{array}
$$

27. Solve for x :
exp. form

$$
\begin{aligned}
\log _{2}\left(\log _{81} x\right) & =-2 \\
2^{-2} & =\log _{81} x \\
81^{2^{-2}} & =x \\
81^{1 / 4} & =x \\
3 & =x
\end{aligned}
$$

28. Solve for x :

$$
\begin{aligned}
\left(\frac{1}{4}\right)^{2 x-1} & =8^{x} \\
\left(2^{-2}\right)^{2 x-1} & =2^{3 x} \\
2^{-4 x+2} & =2^{3 x} \\
-4 x+2 & =3 x \\
-7 x & =-2 \\
x & =+217
\end{aligned}
$$

29. Solve the following equation algebraically. State your answer correct to 3 decimal places

$$
\begin{aligned}
5^{2 x-1}=7^{x+4} & \quad \text { [3 marks] } \\
\log 5^{(2 x-1)} & =\log 7 \\
(2 x-1) \log 5 & =(x+4) \log 7 \\
2 \times \log 5-\log 5 & =x \log 7+4 \log 7 \\
2 \times \log 5-x \log 7 & =4 \log 7+\log 5 \\
x(2 \log 5-\log 7) & =4 \log 7+\log 5) \\
x & =\frac{4 \log 7+\log 5}{2 \log 5-\log 7}
\end{aligned}
$$

30. In June 1998, the black bear population in Manitoba was estimated at 1500 bears. The population can be modeled by the equation $A=P e^{r t}$ where r is the annual rate of increase and t represents the number of years.
Find the annual rate of increase in the bear population if it was estimated at 1740 bears in June 2001.
State your answer correct to 3 decimal places.
[3 marks]

$$
\begin{aligned}
A & =P e^{r t} \\
1740 & =1500 e^{r(3)} \\
\frac{1740}{1500} & =e^{3 r} \\
\ln (1740 / 1500) & =3 r \ln e \\
\frac{\ln \left(\frac{1740}{1500}\right)}{3} & =r \\
r & =0.0494 \\
& 0.050
\end{aligned}
$$

35. Solve for x algebraically.

$$
\begin{aligned}
& 3^{x+4}=7^{2 x+1} \\
& \log 3^{(x+4)}=\log 7^{(2 x+1)} \\
& (x+4) \log 3=(2 x+1) \log 7 \\
& \times \log 3+4 \log 3=2 \times \log 7+\log 7 \\
& \times \log 3-2 \times \log 7=0.877 \\
& x(\log 7-2 \log 7)=\frac{\log 3}{\log 7-4 \log 3}=0 \log 3-2 \log 7
\end{aligned}
$$

36. If $\log _{a} 2=0.3562$ and $\log _{a} 5=0.8271$ show that $\log _{a} 40=1.8957$.

$$
\begin{aligned}
& \log _{a} 40 \\
& \log _{a} 8 \cdot 5 \\
& \log _{a} 2^{3} \cdot 5 \\
& \log _{a} 2^{3}+\log _{a} 5 \\
& 2 \log _{a} 2+\log _{a} 5 \\
& 2(0.3562)+0_{2} 5271 \\
& 3 \log _{2} 5686 \\
& \log _{0}+8.8271
\end{aligned}
$$

31. If $\log _{a} x=16$, find the value of $\log _{a} \sqrt{x}$.

$$
\begin{aligned}
& \log _{a} x^{112} \\
& \frac{1}{2} \log _{a} x \\
& \frac{1}{2}(16)^{2}=8
\end{aligned}
$$

32. Find $f^{-1}(x)$ if $f(x)=\log x$. Base 10

$$
\begin{aligned}
& y=10^{x} \\
& f^{-1}(x)=10^{x}
\end{aligned}
$$

33. Solve for x. Give you answer in simplest form.

$$
\begin{aligned}
\log _{9}\left(\log _{4} x\right) & =\frac{1}{2} \\
9^{1 / 2} & =\log _{4} x \\
9^{1 / 2} & =x \\
4^{3} & =x \\
4^{4} & =x
\end{aligned}
$$

34. Find the x-intercept(s) of the following function:

$$
\begin{array}{ll}
y=\log (10-3 x)-2 \log x & {[4 \text { marks }]} \\
0=\log (10-3 x)-\log x^{2} & x^{2}=10-3 x \\
0=\log \left(\frac{10-3 x}{x^{2}}\right) & x^{2}-3 x-10=0 \\
10^{0}=\frac{10-3 x}{x^{2}} & (x-5)(x+2)=0 \\
1=\log \frac{10-3 x}{x^{2}} & x=5
\end{array}
$$

37. A new automobile cost $\$ 24,000$. Its value after t years is given by: $V=24000(0.8)^{t}$.
a) Determine the value after 8 years.

$$
\begin{aligned}
& V=24000(0.8)^{8} \\
& V=4026.53
\end{aligned}
$$

b) How many years will it take for its value to decrease to one-eighth of its initial value? State your answer to 3 decimal places.

$$
\begin{array}{ll}
8 & { }^{8} \log 0.8 t \\
\log (1 / 8) & t= \\
\log (1 / 8) & =t
\end{array}
$$

[1 mark]
38. $\quad \log 0.8\left(100 \sin \frac{\pi}{2}\right)$.

$$
\log 100(1)
$$

2
39. State the range of the function $f(x)=2^{-x}$.

$$
\infty \quad(0, \infty)
$$

40. Solve for x :

$$
\left(\frac{1}{3}\right)^{2 x}=27^{x-5}
$$

$$
3^{-2 x}=3^{3 x-15}
$$

$$
-2 x=3 x-15
$$

$$
-5 x=-15
$$

$$
x=3
$$

