1. Given the functions $f(x)=7-x$ and $g(x)=2 x+1$, determine the equation of $h(x)$, sketch the graph of $h(x)$ and state the domain and range of $h(x)$
a) $h(x)=f(x)+g(x)$

b) $h(x)=f(x) g(x)$

$$
h(x)=x+8
$$

Domain: $(-\infty, \infty)$
Range: $\quad(-\infty, \infty)$

$$
h(x)=-2 x^{2}+13 x+7
$$

Domain: $\quad(-\infty, \infty)$

2. Use the following information to answer the next question.

The graphs of the functions $y=f(x)$ and $y=g(x)$ are shown below.

Sketch the graph of $h(x)=f(x)+g(x)$.

3. Use the following information to answer the next question.

The graphs of $y=f(x)$ and $y=g(x)$ are show below.

Sketch the graph of $h(x)=\left(\frac{f}{g}\right)(x)$

4. Given $f(x)=\sqrt{x-1}, g(x)=x^{2}+3$, and $h(x)=2 x-5$, determine

$$
\text { a) } \begin{aligned}
(g+h)(3) & =g(3)+h(3) \\
& =12+1 \\
& =13
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
\left(\frac{g}{h}\right)(5) & =\frac{g(5)}{h(5)} \\
& =\frac{28}{5}
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
h(h(10)) & =h(15) \\
& =25
\end{aligned}
$$

$$
\text { d) } \begin{aligned}
h(g(3)) & =h(\Omega) \\
& =19
\end{aligned}
$$

e) $g(h(3))=$

$$
=4
$$

f) $g(x)+h(x)=$

$$
\begin{aligned}
& =x^{2}+3+2 x-5 \\
& =\quad x^{2}+2 x-2
\end{aligned}
$$

g) $(h \circ g \circ f)(x)=$

$$
\begin{aligned}
) & =h(g(f(x)) /-1 \\
& =h(g(\sqrt{x-1}) \\
& =h\left((\sqrt{x-1})^{2}+3\right) \\
& =h(x+2) \\
& =2 x-1, \quad x \geq 1
\end{aligned}
$$

5. Given that $f(x)+g(x)=4 x^{2}-2 x+5$, determine possible equations for $y=f(x)$ and $y=g(x)$.

$$
\begin{aligned}
& f(x)=\text { Rowena } 4 x^{2} \\
& g(x)=-2 x+5
\end{aligned}
$$

Answers
may
Vary!
6. Given that $f(g(x))=2 \sqrt{x-2}+3$, determine possible equations for $y=f(x)$ and $y=g(x)$.

$$
f(x)=2 x+3
$$

$$
\left\{\begin{array}{c}
f(x)=2 \sqrt{x}+3 \\
g(x)=x-2 \\
t^{+\quad \text { if. }}=\quad \geq 0 \text { stated } \\
\text { in ordinal. }
\end{array}\right.
$$

7. Given that $f(x)=2 x+4$ and $g(x)=-\frac{1}{2} x+6$, sketch the graph of $h(x)=(g \circ f)(x)$.

$$
\begin{aligned}
& g(f(x)) \\
& g(2 x+4) \\
& =-\frac{1}{2}(2 x+4)+6 \\
& =-x+2+6 \\
& =-x+4
\end{aligned}
$$

