Grade 12 Pre-Calculus Mathematics Notebook

Outcomes: R1

12P.R.1. Demonstrate an understanding of operations on, and compositions of, functions.
10.1 Sums and Differences of Functions

Ex: Given $f(x)=x+1$ and $g(x)=2 x-3$.
a) Write an equation to represent $h(x)$ if $h(x)=f(x)+g(x)$.

$$
\begin{aligned}
& h(x)=x+1+2 x-3 \\
& h(x)=3 x-2
\end{aligned}
$$

b) Write an equation to represent $k(x)$ if $k(x)=f(x)-g(x)$. Alsowntter as

$$
\begin{aligned}
& k(x)=x+1-(2 x-3) \\
& k(x)=x+1-2 x+3 \\
& k(x)=-x+4
\end{aligned}
$$

Also written as $h(x)=(f+g)(x)$

$$
k(x)=(f-g)^{c}
$$

Ex: Given the graphs of $f(x)=x^{2}$ and $g(x)=-2 x+1$
Sketch $(f+g)(x)$ using only the graphs of f and g.
Note: We simply need to add the y-values of f and g to do so.

note: the equation would be

$$
\begin{aligned}
(f+g)(x) & =x^{2}+(-2 x+1) \\
& =x^{2}-2 x+1 \\
& =(x-1)(x-1) \\
& =(x-1)^{2}
\end{aligned}
$$

Ex. Given the graph of $f(x)$ and $g(x)$. Sketch the graph of

Note:
TBACANANDS

Ex4: Use the following graphs to sketch the graph of $g(x)$.

$$
(f-g)(x)
$$

x	$f(x)$	$g(x)$	$(f-g)(x)$
-4	2	0	2
-2	2	+3	-1
0	-1	-2	1
2	1	0	1

Homework: Page 483 \#1-4 (choose 2 from each), 5, 6 (choose 2), 7, 9-11(choose 2 each)
10.2 Products and Quotients of Functions

R1
Pages 488-495
Ex 1: Given $f(x)=x+1$ and $g(x)=2 x-3$.
a) Write an equation for $h(x)$ if $h(x)=f(x) \cdot g(x)$

$$
\begin{aligned}
h(x) & =(x+6)(2 x-3) \\
& =2 x^{2}-x-3
\end{aligned}
$$

b) Write an equation for $k(x)$ if $k(x)=\frac{g(x)}{f(x)}$

$$
\begin{array}{r}
k(x)=2 x=2 \\
x+1
\end{array}
$$

c) Identify the domain of the graphs of $h(x)$ and $k(x)$.

Note: The function in the denominator can never be equation to zero. Therefore, $f(x) \neq 0$.

Domain $h(k)$

Ex: If $h(x)=2 x^{2}-5 x+2$ and $h(x)=f(x) \cdot g(x)$, write two possible solutions for $f(x)$ and $g(x)$.

$$
\begin{gathered}
h(x)=(2 x-1)(x-2) \\
f(x)=2 x-1
\end{gathered}
$$

Ex: Using the graphs of $f(x)$ and $g(x)$ given below, answer the following questions:

a) Identify the zeros of the function $h(x)$ if $h(x)=(f \cdot g)(x)$.

Note: When $\underline{f(x)=0}$ and $g(x)=0$, the function $h(x)$ will also equal zero.

$$
\therefore \text { when } x=-2,1,0
$$

b) Evaluate the following expressions:

$$
\begin{array}{ccc}
\left(\frac{f}{g}\right)(1) & (f \cdot g)(-3) & \left(\frac{f}{g}\right)(0) \\
\frac{1)}{1)}=\frac{-4}{3} & f(-3) \cdot g(-3) & \frac{f(0)}{g(0)}=\frac{-2}{0} \\
& 4(3) & \text { undefined }
\end{array}
$$

Homework: Page 496 \#1, 2, 3, 4(a, b), 5(a, b), 6, 7, 8

Don't confuse $(t \circ g)(x)$ with

$$
(f \cdot g)(x)
$$

10.3 Composite Functions

Ex 1: Given $f(x)=x^{2}+1$ and $g(x)=2 x-3$.
Also written
a) Evaluate the composite function $f(g(2))$. as

$$
\begin{aligned}
g(2) & =2(2)-3 \\
& =1 \\
f(1) & =1^{2}+1 \\
& =2
\end{aligned}
$$

Note: We could also find $f(g(x))$ and then substitute $x=2$.

$$
\begin{aligned}
f(2 x-3) & =(2 x-3)^{2}+1 \\
& =4 x^{2}-12 x+10 \\
\therefore f(g(2) & =4(2)^{2}-12(2)+10
\end{aligned}
$$

b) Write an equation for $g(g(x))$.

$$
\begin{aligned}
g(g(x)) & =2(2 x-3)-3 \\
& =4 x-6-3 \\
& =4 x-9
\end{aligned}
$$

c) Write an equation for $(g \circ f)(x)$.

$$
\begin{aligned}
g(f(x)) & =2\left(x^{2}+1\right)-3 \\
& =2 x^{2}+2-3 \\
& =2 x^{2}-1
\end{aligned}
$$

d) Evaluate $(g \circ f)(-1)$.

$$
g(f(-1))
$$

$$
\begin{aligned}
f(-1) & =(-1)^{2}+1 & \text { So } & g(2) \\
& =2 & & =1
\end{aligned}
$$

Ex2: Use the table below to respond to the following questions.

x	1	2	3	4	5	6
$f(x)$	3	1	4	2	2	5
$g(x)$	6	\mathbf{n}^{3}	2	1	2	3

a) $f(g(2))$
b) $g(f(0))$ $f(3)=4$

Does not exist
c) $(g \circ f)(3)$
d)
$g(f(3))$

$$
g(4)=1
$$

$$
\begin{aligned}
& (f \circ f)(1) \\
& f(f(1))=4 \\
& f(3)=4
\end{aligned}
$$

Ex3: Given $f(x)=2 x-3$ and $g(x)=\frac{x+3}{2}$, determine $f(g(x))$ and

$$
\left.\begin{array}{rl}
g(f(x)) \\
f(g(x)) & =\not 2\left(\frac{x+3}{2}\right)-3 \\
& =x+3-3 \\
& =x
\end{array}\right\} \begin{aligned}
g(f(x) & =\frac{(2 x-3)+3}{2} \\
& =\frac{2 x}{2} \\
& =x
\end{aligned}
$$

Note: When $f(g(x))=x$ or $g(f(x))=x$, this means that $f(x)$ and $g(x)$ are inverses of each other.

CooL!

Ext: Use the graphs below to answer the following questions:

a) $f(g(2))$
b) $g(f(4))$
$f(-1)$
$g(2)$ $=4$

$$
=-1
$$

c) Determine the value of x if $f(g(x))=3$.
first: $\quad f(x)=3$
$y=3$ when $x=0$ and -4
Next: $\quad g(x)=0 \quad$ and $\quad g(x)=-4$

$$
\begin{aligned}
& x=-2 \text { and } \\
& x=1
\end{aligned}
$$

note:
Domain: $x \geq-3$
Domain $x \in \mathbb{R}$.
Ex: Given $f(x)=\sqrt{x+3}$ and $g(x)=x^{2}-4$.
a) Determine $f(g(x))$ and identify the domain.

$$
\begin{aligned}
& f(g(x)) \\
& f\left(x^{2}-4\right)
\end{aligned} \begin{aligned}
& f\left(x^{2}-4\right)+3 \\
&=\sqrt{x^{2}-1}
\end{aligned}
$$

Recall
Graphing

$$
y=\sqrt{f(x)}
$$

b) Determine $g(f(x))$ and identify the domain.

$$
\begin{aligned}
& g(f(x)) \\
& g(\underbrace{\sqrt{x+3}}_{\text {restricted }})=(\sqrt{x+3})^{2}-4 \\
& g(\sqrt{x+3})=x+3-4
\end{aligned}
$$

Domain $x \geq-3$

Note: We must consider the domain of the original graph.
This graph would boo like

We will cover -this later next test
Graphing Absolūte Value and Reciprocal Functions
R1
For each graph, draw in the absolute value function. $y=|f(x)|$

For each graph, draw in the reciprocal function, state $y=\frac{1}{g(x)^{\prime}}$, and determine the equation of the asymptote(s) of the reciprocal function.

