Chapter 9: RATIONAL FUNCTIONS

$$
y=\frac{a}{x-h}+k
$$

Sketch the graph of $f(x)=\frac{1}{x}$.
$1 / 2$

| $x$ | $y$ |
| :---: | :---: |
| 1 | 1 |
| 2 | $1 / 2$ |
| 3 | $1 / 3$ |
| -1 |  |
| -2 |  |

ODD function Symmetric over the orisin.


Note, $x=0$ is a non permissible value.
Graphically this creates a vertical asymptote
When $x \rightarrow \infty, y \rightarrow 0 \quad$ and when $x \rightarrow-\infty, y \rightarrow 0$
Thus, $y=0$ is a horizontal $\frac{\text { asymptote. }}{\text {. }}$
The curves are in Quadrants $I, \underline{11}$

Sketch the graph of $f(x)=-\frac{1}{x}$.
The curves are now in Quadrants

Note: $-\frac{1}{x}$ is the same as $\frac{-1}{x}$.

Page 4

$\qquad$
Example \#1
Sketch the graph of $y=\frac{1}{x-3}+1$

$$
y=\frac{1}{x} \quad \gg
$$

Note : You must label a point in each section of the graph

$y$ int:

$$
\begin{aligned}
y & =\frac{1}{0-3}+1 \\
& =-\frac{1}{3}+1 \\
& =-\frac{1}{3}+\frac{3}{3}
\end{aligned}
$$

Page $6=2 / 3$

Given $f(x)=\frac{1}{x}$, we can sketch the graph of $y=3 f(x+2)-1$.

Note:
The equation of the transformed graph is

$$
y=\frac{3}{x+2}-1
$$

Can you see the connection?


The general equation of a rational function is $y=\frac{a}{x-h}+k$
This represents a vertical stretch by a factor of $a$, followed by a horizontal shift of $h$ units, and a vertical shift of $k$ units.
$x=h$ is a vertical Asymptote, $\quad y=k$ is a $\qquad$ horizontal asymptote. functor
Explain the behaviour of the graph for values of the variable around $\mathbf{x = - 2}$.
$\lim _{x \rightarrow-2^{+}} f(x)=\infty$ As we approach $x=-2$ from the right the yualues approach $\infty$.
As ire approach $x=-2$ from the left the values Explain the end behaviour of the graph.

As $|x|$ apoget infinitely big $y$ approalles -1

$$
\lim _{x \rightarrow \pm \infty} f(x)=-1
$$

Example \#2
Sketch the graph of $y=\frac{-2}{x-1}+3$.

| non-permissible value | $x \neq 1$ |
| :--- | :---: |
| $x$-intercept | $5 / 3$ |
| $y$-intercept | 5 |
| vertical asymptote | $x=1$ |
| horizontal asymptote | $y=3$ |
| domain $\{x \in R, x \neq 1$ | $\}$. |
| range $\quad\{y \in R, y \neq 3\}$ |  |



$$
\begin{aligned}
& x=0 \\
& y=\frac{-2}{-1}+3
\end{aligned}
$$

$$
x=2
$$

$$
y=\frac{-2}{2-1}+3
$$

$$
y=1
$$

$$
-3=\frac{-2}{x-1}
$$

$$
\begin{aligned}
& x-1=-\frac{2}{3} \\
& x=-\frac{2}{3}+1 \\
& x=+\frac{2}{3}+\frac{3}{3} \\
& x=\frac{5}{3}
\end{aligned}
$$

$$
O^{R} \Leftarrow
$$

$$
-3(x-1)=-2
$$

$$
-3 x+3=-2
$$

$$
-3 x=-5
$$

$$
x=5 / 3
$$

$$
y=\frac{a}{(x-h)^{2}}+k \text { Date:- } \quad \text { evenfinetion }
$$

Sketch the graph of $f(x)=\frac{1}{x^{2}}$.

| $x$ | $y$ |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |



Example \#4
reflects oyer!
the $x$-axis.
Sketch the graph of $f(x)=-\frac{1}{x^{2}}$. the

| $x$ | $y$ |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

Note: We can use the previous ideas to help us graph the transformed versions of these functions.

### 9.1 Assignment: Graph each of the following functions

1) $y=\frac{2}{x-3}+1$
2) $y=\frac{-1}{x+1}$


3) $y=\frac{1}{(x-1)^{2}}-1$
4) $y=\frac{-2}{x^{2}}+3$


5) $y=\frac{1}{(x-1)^{2}}$

6) $y=\frac{1}{x-2}-1$

State a) Domain $x \in R, x \neq 2$
b) Range $y \in \mathbb{R}, y \neq-1$
c) Vertical Asymptote $\quad x=2$
d) Horizontal Asymptote $y=-1$

## 9.2: Graphing Rational Functions of the form $y=\frac{f(x)}{g(x)}$

## Example \#1

Sketch the graph of $y=\frac{3 x-4}{x-2}$.


T: Determine the Vertical Asymptote (s)
Asymptotes will occur when $g(x)=0 \quad$ (note: these are also NPV's)

$$
x=2
$$

II: Determine the Horizontal Asymptote

$$
\lim _{x \rightarrow \pm \infty} f(x)
$$

- If the degree of the numerator equals the degree of the denominator, then the equation of the horizontal asymptote is " $y=$ ratio of leading coefficients".

Ex: $\quad y=\frac{3 x^{2}+4}{6 x^{2}-8}$ eqn of h.a.: $y=\frac{1}{2} \quad y=\frac{7-x+x^{2}-2 x^{3}}{1 x^{3}-5}$ eq of h.a.: $y=\frac{-2}{1}$

- If the degree of the numerator is less than the degree of the denominator, then the horizontal asymptote is $y=0$.

Ex: $y=\frac{1}{x^{2}+1}$ eqn of h.a.: $y=0 \quad y=\frac{x-1}{x^{3}+5}$ eqn of h.a.: $y=0$

- If the degree of the numerator is greater than the degree of the denominator, then there is no horizontal asymptote.

Ex: $y=\frac{x+9}{3}$ eqn of h.a.: none $y=\frac{x^{4}-1}{x^{2}+1}$ eqn of h.a.: none.


III: Determine at least one point in each section and use your knowledge of asymptotic behavior to construct the graph.

Example 1 continued:
Sketch the graph of $y=\frac{3 x-4}{x-2}$. H.A $\Rightarrow y=3$


| vertical asymptote | $x=2$ |
| :--- | :--- |
| horizontal asymptote | $y=3$ |
| domain $\{x \in R, x \neq 2\}$. |  |
| range $\{y \in R, y \neq\}\}$ |  |

$$
\begin{aligned}
y & =\frac{3(3)-4}{3-2} \\
& =\frac{5}{1} \quad(3,5)
\end{aligned}
$$

MPC40S
Date: $\qquad$
Example \#2 $\quad \lim _{x \rightarrow \infty}$
Sketch the graph of $y=\frac{x}{x^{2}-4} . \quad y=\frac{x}{(x-2)(x+2)}$

$$
\begin{aligned}
& x=-3 \\
& y=\frac{-3}{9-4} \\
& y=-\frac{3}{5}
\end{aligned}
$$

$$
\begin{array}{r}
x=3 \\
y=\frac{3}{9-4} \\
=\frac{3}{5}
\end{array}
$$

$$
\left.\begin{array}{l}
x=1 \\
y=\frac{1}{1-4} \\
y=-\frac{1}{3}
\end{array}\right\} \begin{aligned}
& x=-1 \\
& y=\frac{-1}{1-4} \\
& y=\frac{1}{3}
\end{aligned}
$$

int:

$$
\begin{aligned}
& 0=\frac{x}{x^{2}-4} \\
& 0=x
\end{aligned}
$$

| vertical asymptotes) | $x= \pm 2$ |
| :--- | :--- |
| horizontal asymptote | $y=0$ |
| domain $\{x \in R, x \neq \pm 2\}$ |  |
| range $\{y \in \mathbb{R}\}$ |  |

HPV $\quad x \neq \pm 2$

Page 14
.

Example \#3

Sketch the graph of $y=\frac{-1}{x^{2}+1}$.
xint: $0=\frac{1}{x^{2}+1} \quad$ int: $y=\frac{1}{1}$

$$
x=1
$$

$$
y=\frac{1}{2}
$$

$$
0=1
$$

| non-permissible value | none! |
| :--- | :---: |
| $x$-intercept | $\underline{\text { none! }}$ |
| $y$-intercept | 1 |
| vertical asymptote | none! |
| horizontal asymptote | $y=0$ |
| domain $x \in \mathbb{R}$. | $(-\infty, \infty)$ |
| range $(0,1]$ |  |


$\qquad$
Example \#4
Ex4. Sketch the graph of $f(x)=\frac{x+1}{x^{2}-2 x-3}$.
Remember to first factor the numerator and denominator if possible.

$$
\begin{aligned}
& f(x)=\frac{(x+1)}{(x-3)(x+1)} \\
& f(x)=\frac{1}{x-3} \quad x \neq-1
\end{aligned}
$$

$$
\text { when. } x=-1
$$

$$
f(-1)=\frac{1}{-1-3}
$$

point of
Removable

$$
=\frac{-1}{4}
$$ 4

discontinuih
A $\qquad$ A discontinuity is a point at which the graph of a function is not con
This point is missing from the graph and so we represent it with an open circle.

Example \#5


Sketch the following:

$$
y=\frac{x^{2}-5 x+6}{x-2}
$$

$$
y=\frac{(x-2)(x+3)}{(x-2)}
$$


$=$
$\qquad$

Example \#6

What type of discontinuity will this function have?

$$
y=\frac{x-2}{x^{2}-3 x+2}
$$

$$
\begin{aligned}
& y=\frac{x-2}{(x-2)(x-1)} \\
& y=\frac{1}{x-1} \quad x \neq 2
\end{aligned}
$$

asymptotic dis. c $x=1$

Graph the function.

0

$$
\begin{aligned}
& x=0 \\
& y=\frac{1}{-1} \\
& (0,-1)
\end{aligned}
$$

point discontinuity
(removable discontruitey)
) (c) $x=2$ (c) $x=2$
$y=\frac{1}{x-1}$ $y=\frac{1}{2-1}$ $y=1$

9.2 Homework Graphing rational functions - R14

1. $y=\frac{2}{x-3}$

2. $f(x)=\frac{-2}{(x-2)(x+6)}$


Page 19
3. $f(x)=\frac{x}{(x-2)(x+6)}$

4. $f(x)=\frac{-2 x}{(x-2)(x+6)}$
rote: This graph is the above graph reflected over the $x$-axis on
stretuled vertically
by a factor of $2.1\left(-7, \frac{1}{19}\right)$

,
5. $f(x)=\frac{(x-4)(x+5)}{(x-2)(x+5)}$

$$
f(x)=\frac{x-4}{x-2}, x \neq-5
$$

piintal duscontinuity

$$
\begin{aligned}
& f(-5)=\frac{-9}{-7} \\
&=9 / 7 \\
&(-5,9 / 7)
\end{aligned}
$$


6. $f(x)=\frac{x^{2}-5 x+6}{x-3}$

$$
\begin{aligned}
& f(x)=\frac{(x-3)(x-2)}{(x-3)} \\
& f(x)=x-2, x \neq 3
\end{aligned}
$$

when $x=3$

$$
f(3)=1
$$

point of disconthints e $(3,1)$


Example \#1

Ex1: Solve the following equations algebraically and graphically.

$$
y=\frac{1}{x} \stackrel{\longmapsto}{\leftrightarrows}
$$

a) $\frac{1}{x+2}-4=0$

Algebraically LCD: $x+2$
Graphically

$$
y=\frac{1}{x+2}-4
$$

$$
\begin{gathered}
\frac{1}{x+2}(x+2)-4(x+2)=0(x+2) \\
1-4(x+2)=0 \\
1-4 x-8=0 \\
-7=4 x \\
-7=x \\
\frac{-7}{4}=0 \\
x=-1^{3} / 4
\end{gathered}
$$



$$
\begin{array}{r}
y=-1-4 \\
(-3,-5)
\end{array}
$$

Find mint $\rightarrow$ it's the solution,

$$
x \neq 1
$$

LCD: $(x-1)$
$(x-1)$
b) $\frac{2}{x-1}=(x-2)(x-1)$

Algebraically

$$
\begin{aligned}
& 2=x^{2}-3 x+2 \\
& 0=x^{2}-3 x \\
& 0=x(x-3) \\
& x=0 \quad x=3
\end{aligned}
$$

Graphically

$$
\begin{aligned}
& y_{1}=\frac{2}{x-1}+0 \\
& y_{2}=x-2
\end{aligned}
$$

Solution

$$
x=0,3
$$

