Question 1

A water filtration system which removes impurities from a sample of water can be modelled by $P=0.25(0.55)^{n}$. where:
$P=$ the percentage of impurities remaining, in decimal form
$n=$ the number of fitters

$$
\pi 0.01
$$

Determine, algebraically, how many filters are required so that less than 1% of the impurities remain in the water sample. Express your answer as a whole number.

$$
\begin{array}{ll}
0.01=0.25(0.55)^{n} & n=5.384 \\
\log 0.04={ }^{n} \log 0.55 & \therefore 6 \text { filters. } \\
\log 0.04 & =n
\end{array}
$$

$$
\frac{\operatorname{loc} 0.04}{\log 0.55}
$$

Question 2

A lake affected by acid rain has a pH of 4.4
A person suffering from heartburn has a stomach acid pH of 1.2
The pH of a solution is defined as $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$where $\left[\mathrm{H}^{+}\right]$is the hydrogen ion concentration.

How many times greater is the hydrogen ion concentration of the stomach than that of the lake?
Express your answer as a whole number
Rain
Stomnchacid

$$
\begin{array}{rlrl}
4.4 & =-\log \left[H_{1}^{+}\right] & \log 2 & =-\log \left[\mathrm{H}_{2}^{+}\right] \\
-4.4 & =\log _{1}{ }^{+} \quad & -1.2=\log H_{2}^{+} \\
10^{-4.4} & =H_{6}^{+} & 0^{-1.2}=H_{2}^{+} \\
\frac{H_{2}^{+}}{H_{1}^{+}} & =\frac{10^{-1.2}}{10^{-4.4}}= \\
& =10^{-1.2-(-4.4)}=
\end{array}
$$

Question 3

An earthquake in Vancouver had a magnitude of 6.3 on the Richren scale. An earthquake m Japan had a magnitude of 8.9 on the Richter scale

How many times more intense was the Japan earthquake than the Vancouver earthquake?
You may use the formula below.
$M=\log \left(\frac{A}{A_{0}}\right)$
where M is the magninde of the earthquake on the Richter scale
A is the intensity of the earthquake
A_{0} is the intensiry of a standard earthquake
Express your answer as a whole number.

Question 4

A population of 500 bacteria will triple in 20 hours.
Using the formula given below,

$$
\begin{aligned}
& A=P e^{r t} \\
& A=\text { population after } t \text { hours } \\
& P=\text { initial population } \\
& r=\text { rate of growth } \\
& t=\text { time in hours }
\end{aligned}
$$

a) Determine the rate of growth, r. $r(20)$

$$
\ln 3=2 \text { or line }
$$

$$
\begin{aligned}
& 3=e^{20 r} \\
& \ln 3=\ln e^{20 r}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\ln 3}{20}=r \\
& r=0.054930614
\end{aligned}
$$

b) Determine how many hours it will take for the initial population to double with the same rate of growth.

$$
\begin{aligned}
& 1000=500 e \\
& 2=e^{r t} \\
& \ln 2=\ln e^{r t} \\
& \ln 2=r \\
& \frac{\ln 2}{r} e t \\
& t=12.619 \mathrm{hrs} .
\end{aligned}
$$

Jess invests $\$ 12000$ at a rate of 4.75% compounded monthly. How long will it take for Jess to triple her investment?

Express your answer in years, correct to 3 decimal places

The number of times a website is visited can be modeled by the function:

$$
A=800(e)^{n}
$$

where $A=$ the total number of visitors at time t
$t=$ the time in days $(t \geq 0)$
$r=$ the rate of growth
After 5 days, 40000 people have visited the site.
Determine the number of visitors expected after 9 days.
Express your answer as a whole number.

Question 7

The population of Oakfalls can be described by the formula

$$
P=P_{o} e^{\prime t}
$$

where $P_{0}=$ the intial population
$P=$ the final population
$r=$ the rate of growth
$t=$ the time in years
The population of Oakfalls was 15125 on January 1. 1976
On January 1. 1986 the population fell to 13780
Assuming that the poputation decreased at a constant rate, find the valne of r

