Grade 12
 Pre-Calculus Mathematics
 [MPC40S]

12P.R.11. Demonstrate an understanding of factoring polynomials of degree greater than 2 (limited to polynomials of degree ≤ 5 with integral coefficients).

11P.R. 12 Graph and analyze polynomial functions (limited to polynomial functions of degree ≤ 5).

Date:

Chapter 3: POLYNOMIAL FUNCTIONS
3.1 - Characteristics of Polynomial Functions

Polynomial Function: A function of the form

$$
\begin{aligned}
& f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{2} x^{2}+a_{1} x+a_{0} \\
& \text { where } n=\text { is a whole (exponents) } \\
& x=\text { is a variable } \\
& a_{n} \text { and } a_{0}=\text { can be any value. }
\end{aligned}
$$

Example
The following are examples of polynomial functions.

$$
\begin{array}{ll}
f(x)=3 x-5 & h(x)=x^{3}+2 x^{2}+x-2 \\
g(x)=x^{2}+3 x-17 & y=x^{5}+7 x^{3}-1
\end{array}
$$

Example \#1
Identify the functions that are not polynomials and state why.
a) $g(x)=\sqrt{x}+5$

b) $y=|x|$ Not! Absolute value funcros!!
c) $f(x)=3 x^{4}$ \qquad
d) $y=x^{\frac{1}{8}}-7$ Not! exponent n OT a whole \#
\qquad
e) $y=2 x^{3}+3 x^{2}-4 x-1$ \qquad
f) $h(x)=\frac{1}{x} \frac{\text { NOT! The exponent is not a whole \#. }}{\text { n }}$ n.

$$
\overbrace{}^{n \rightarrow-\infty}
$$

\qquad
End Behaviour: the be havior of the

Degree The power with the highest exponent!
constant Term: The term without a
Variable.

Leading Coefficient: the coefficient in from of

$$
\frac{\text { the term with the highest }}{\text { exponent. }}
$$

Example \#2

For each polynomial function, state the degree, the leading coefficient, and the constant term of each polynomial function.
a) $y=3 x^{2}-2 x^{5}+4$

- Degree $\quad 5$
- Leading Coefficient - 2
- Constant Term \qquad
b) $y=-4 x^{3}-4 x+3$
- Degree 3 - Leading Coefficient

- Constant Term

c) $f(x)=3 x-5$
- Degree 1 - Leading Coefficient 3 - Constant Term $\quad-5$
d) $f(x)=-6 x^{4}-2 x+0$
- Degree 4 - Leading Coefficient - 6 - Constant Term 0
\qquad

Compare the graphs of even degree and odd degree functions. How does the leading term affect the general behaviour of the graph?
the L.C. affects the
end behavior!
\qquad
a) The equations and graphs of several even-degree polynomials are shown below. Study these graphs and generalize the end behaviour of even-degree polynomials.

$$
f(x)=x^{4}
$$

$f(x)=-x^{4}$ quartic

$f(x)=x^{2}-x+6$ quadratic

$f(x)=x^{4}-4 x^{3}+x^{2}+7 x-3$
quartic

$f(x)=-x^{2}-8 x-7$ quadratic

$$
f(x)=-x^{4}+7 x^{2}-5
$$

quartic

What do you notice about the end behaviour of an even-degree polynomial when...

The leading coefficient is positive?
Even degree
\qquad
\qquad

The leading coefficient is negative?
Even
\qquad
\qquad
\qquad
b) The equations and graphs of several odd-degree polynomials are shown below. Study these graphs and generalize the end behaviour of odd-degree polynomials.

What do you notice about the end behaviour of an odd-degree polynomial when...

The leading coefficient is positive?

\qquad

Notes

- The graph of a polynomial function must be smooth and continuous
- The graph has at most $(n-1)$ turning points
- The function has at most n roots (x -intercepts)
- All polynomial functions have y - intercept at a_{0}, the constant term of the function

Pg. \#8

Example \#3

Match the following polynomials with its corresponding graph.
1.) $\left.f(x)=2 x^{3}-4 x^{2}+x+2\right)$
2.) $g(x)=-x^{4}+10 x^{2}+5 x-6$
3.) $h(x)=-2 x^{5}+5 x^{3}-x+1$
4.) $p(x)=x^{4}-5 x^{3}+16$

b) 1
b) Answer: \qquad

d) Answer: \qquad

Date:

Chapter 3: POLYNOMIAL FUNCTIONS 3.2 - The Remainder Theorem

We are going to learn how to divide a polynomial by a binomial.

Long Division (Method \#1)

Dividend $=$ Polynomial
Divisor $=$ Binomial $(x-a)$
Quotient $=$ Answer

Example \#1

After you divide, your answer can be written in two forms:

1) $\frac{\text { Dividend }}{\text { Divisor }}=$ Quotient $+\frac{\text { remainder }}{\text { Divisor }} \quad O R$
2) Dividend $=($ Divisor $)($ Quotient $)+$ remainder

Answer to the above example:

Note: Since the remainder is 0 , this tells us that $(x+3)$ is a factor of the polynomial $x^{2}+8 x+15$

Note: The restriction on the variable is $x \neq-3$ since division by 0 is not defined.
\qquad

Synthetic division is an alternate form of long division that we can use to divide polynomials.

This type of division uses only the coefficients of each equation.
Steps:

1. Rearrange the equation in descending order
2. Write only the coefficients of the polynomial. If any are missing, fill in their spot with a zero.
3. Bring down the first coefficient.
4. Multiply by the divisor.
5. Add that number to the second coefficient.
6. Repeat steps 4-6 until there are no more coefficients to bring down.
7. Write the resulting numbers as the coefficients of a new polynomial. The last number will be the remainder.

Example \#2
Divide the following expression $\frac{x^{2}+8 x+15}{x+3}$

$$
\begin{aligned}
& x-a \\
& x=a
\end{aligned} \quad \text { divisor }
$$

\qquad
Example \#3 $0 x^{2}$
Divide $2 x^{4}+2 x^{3}-x+4$ by $x+2$

$$
\left.\left.\begin{array}{l|lllll}
-2 & 2 & 2 & 0 & -1 & 4 \\
x & 3 & -4 & 4 & -8 & 18
\end{array}\right] \begin{array}{lllll}
+ & 2 & -2 & 4 & -9 \\
22
\end{array}\right] \begin{array}{ll}
2 x^{4}+2 x^{3}-x+4 \\
x+2 & 2 x^{3}-2 x^{2}+4 x-9+\frac{22}{x+2}
\end{array}
$$

Example \#4
Divide $\left(2 x^{3}+5 x^{2}+9\right) \div(x+3)$

$-$	-3	5	0	9
2	-6	3	-9	
2	-1	3	0	

$$
\begin{gathered}
\frac{2 x^{3}+5 x^{2}+9}{x+3}=2 x^{2}-x+3+\frac{0}{x+3} \\
\text { or } \\
2 x^{3}+5 x^{2}+9=\left(2 x^{2}-x+3\right)(x+3)+0
\end{gathered}
$$

\qquad

Example \#5
Divide $x^{3}-2 x^{2}+6 x-12$ by $x-1$

1	1	-2	6	-12
	1	-1	5	
	-1	5	-7	

$$
\frac{x^{3}-2 x^{2}+6 x-12}{x-1}=x^{2}-x+5 \frac{-7}{x-1}
$$

Divide $x^{3}-7 x^{2}-6 x+72$ by $x-4$
substitute $x=4$

$$
\begin{aligned}
& 4^{3}-7(4)^{2}-6(4)+72 \\
& 64-7(16)-24+72 \\
& 64-112-24+72
\end{aligned}
$$

What is the remainder?
\qquad
Chapter 3: POLYNOMIAL FUNCTIONS
3.3 - The Factor Theorem

The Factor Theorem tells us whether or not the divisor $(x-a)$ is a factor of the dividend.

If there is no remainder (ie. the remainder $=0$), then the divisor is a factor.
The Factor Theorem states that $(x-a)$ is a factor of $P(x)$
if and only if $P(a)=0$

Example \#1
a) Determine whether or not $x+2$ is a factor of $P(x)=x^{3}+4 x^{2}+x-6$

$$
\begin{aligned}
& P(-2)=(-2)^{3}+4(-2)^{2}-2-6 \\
& P(-2)=-8+4(4)-2-6 \\
& P(-2)=-8+16-8 \\
& P(-2)=0
\end{aligned} \quad \begin{aligned}
& (x+2) \text { is } \\
& \text { a factor! }
\end{aligned}
$$

b) If $x+2$ is a factor, completely factor $P(x)=x^{3}+4 x^{2}+x-6$ Divide $P(x)$ by $(x+2)$

-2	1	4	1	-6
x	$\}$	-2	-4	6
+	1	2	-3	0

$$
\begin{aligned}
& P(x)=(x+2)\left(x^{2}+2 x-3\right) \\
& P(x)=(x+2)(x-1)(x+3)
\end{aligned}
$$

\qquad

Example \#2

Completely factor $P(x)=x^{3}-7 x+6$

To do this, we must find the factors of $P(x)=x^{3}-7 x+6$.
Let's use the Remainder Theorem.

Try $(x+1) \quad P(-1)=(-1)^{3}-7(-1)+6$

$$
\begin{aligned}
& P(-1)= \\
& P(-1)=
\end{aligned}
$$

Try $(x+2) \quad P(-2)=(-2)^{3}-7(-2)+6$

$$
P(-2)=
$$

\qquad

$$
P(-2) \neq 0
$$

Try $(x-3) \quad P(3)=(3)^{3}-7(3)+6$

$$
P(3)=
$$

\qquad

$$
P(3)=
$$

\qquad
Try $(x-1) \quad P(1)=(1)^{3}-7(1)+6$

$$
\begin{aligned}
& P(1)= \\
& P(1)=\square
\end{aligned}
$$

$$
p(x)=(x-1)(x-2)(x+3)
$$

There must be an easier way than randomly guessing infinitely many times...
\qquad

Integral Zero Theorem

Expand the following expression:
$(x-1)(x+2)(x-5)=x^{3}-4 x^{2}-7 x+10$

Note: The factors of the polynomial are $(x-1),(x+2)$ and $(x-5)$
The zeros of the polynomial are $1,-2$ and 5

Note: When we multiply all of the factors, the constant is +10 , which means that only factors of 10 can be factors of the polynomial.
\qquad

This is known as the Integral Zero Theorem

The Integral Zero Theorem states that if $(x-a)$ is a factor of the polynomial function $P(x)$ with integral coefficients, then a is a factor of the constant term of $P(x)$.
-
\qquad -
\qquad

Example \#3
a) Find all of the possible zeros of the following polynomial:

$$
f(x)=x^{3}-3 x^{2}-6 x+8 \rightarrow \frac{ \pm 1, \pm 2, \pm 4, \pm 8}{8}
$$

factors of 8
b) Completely factor the polynomial above.

$$
f(x)=x^{3}-3 x^{2}-6 x+8
$$

(1) Create a lust of possible integral zeroes.
(2) Use the Factor theorem to find one that works.

$$
\begin{aligned}
& f(2)=2^{3}-3(2)^{2}-6(2)+8 \\
& f(2)=8-3(4)-12+8 \\
& f(2)=8-12-12+8 \\
& f(2) \neq 0
\end{aligned}
$$

$$
f(-2)=0
$$

(3) Divide!
(4) Factor

-2	1	-3	-6	8
	-2	10	-8	
1	-5	4	0	

$$
P(x)=(x+2)\left(x^{2}-5 x+4\right)
$$

MPC40S
Date: \qquad

Example \#4
a) Find all of the possible zeros of the following polynomial:

$$
f(x)=2 x^{3}-3 x^{2}-8 x+12 \rightarrow \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12
$$

b) Completely factor the polynomial above.

$$
\begin{aligned}
& f(-2)=0 \\
& f(x)=(x-2)(2 x-3)(x+2) .
\end{aligned}
$$

$$
\text { Mus zero } \operatorname{mis}_{i>}^{x^{\prime}}
$$

c) Determine the zeros of $f(x)$.

$$
\begin{aligned}
& 0=(x-2)(2 x-3)(x+2) \\
& x=2, \frac{3}{2},-2 .
\end{aligned}
$$

\qquad

Example \#5
a) Completely factor $P(x)=x^{4}-5 x^{3}+2 x^{2}+20 x-24$

$$
P(x)=(x-3)(x-2)^{2}(x+2)
$$

b) Determine the zeros of $P(x)$.

$$
\begin{gathered}
0=(x-3)(x-2)^{2}(x+2) \\
x=3,2,-2
\end{gathered}
$$

\qquad

The Remainder Theorem
The remainder theorem allows us to obtain the value of the remainder without actually dividing.

When $P(x)$ is divided by $(x-a)$ the remainder is $P(a)$

Example \#7
Use the remainder theorem to determine the remainder when the polynomial $P(x)=x^{3}-5 x^{2}-17 x+21$ is divided by the following binomials.

Verify your solution using either long division or synthetic division.
a) $x+1$

$$
\begin{aligned}
& P(-1)=(-1)^{3}-5(-1)^{2}-17(-1)+21 \\
& P(-1)=-1-5(1)+17+21 \\
& P(-1)=-1-5+17+21 \\
& P(-1)=32
\end{aligned}
$$

b) $x-1$

$$
\begin{aligned}
& P(1)=(1)^{3}-5(1)^{2}-17(1)+21 \\
& P(1)=0 \\
& \therefore \therefore \quad x-1 \text { is } \\
& \text { a factor } \\
& \text { of } P(x)
\end{aligned}
$$

Date:

