$\qquad$

## Chapter 1: TRANSFORMATIONS AND FUNCTIONS 1.4 - Inverse of a Relation

Relation: In mathematics, it is the connection between the $x$ and $y$ variables. One single $x$-value may have multiple $y$-values.

Function: A particular relation where each element in the domain $(x)$ has one and only one element in the range $(y)$. (Remember, a function passes the Vertical Line Test)

Example

- Relation but NOT a Function

- Relation AND a Function



## Inverse of a relation

- The inverse of a relation is found when the $x$ and $y$ coordinates are
- The mapping notation is $\qquad$
- The graph of a relation and its inverse are reflections over the line $y=x$ - If the inverse is a function we denote it as $f^{-1}(x)$
- To see if the inverse of a relation will result in a function, we can use the
horizontal line test
$\qquad$

Example \#1
Given $y=f(x)$ sketch its inverse on the same graph.
Does the inverse represent a function?
State the domain and range for both $y=f(x)$ and the inverse.

a Switch the x a y wordinates of each point.

$$
\begin{aligned}
& (x, y) \rightarrow(y, x) \\
& (-2,0) \rightarrow(0,-2) \\
& (0,4) \rightarrow(4,0)
\end{aligned}
$$

|  | $f(x)$ | Inverse |
| :---: | :---: | :---: |
| Domain | $(-\infty, \infty)^{x \in \mathbb{R}}$ | $(-\infty, \infty)$ |
| Range | $-\infty, \infty) y \in \mathbb{R}$ | $(-\infty, \infty)$ |

Example \#2
Given $y=f(x)$, sketch its inverse on the same graph.
Does the inverse represent a function? $\square$
State the domain and range for both $y=f(x)$ and the inverse.

$(x, y) \rightarrow(y, x)$
$(-2,1) \rightarrow(1,-2)$
$(-1,2) \rightarrow(2,-1)$
$(1,2) \rightarrow(2,1)$
$(2,0) \rightarrow(0,2)$

|  | $\rightarrow(x)$ | Inverse |
| :---: | :---: | :---: |
| Domain | $[-2,2]$ | $[0,2]$ |
| Range | $[0,2]$ | $[-2,2]$ |

note: the domain of $f(x)$ becomes the range of Pg.\#28 inverse.

## Example \#3

a) Sketch $f(x)=x^{2}-1$.
b) Without graphing, will the inverse be a function? Explain.
Wo! $f(x)$ fails
the horizontal line test.

c) Use the graph of $f(x)$ to sketch its inverse on the same graph above.
d) Explain how we can restrict the domain of the original graph so the inverse is a function.

$$
x \geq 0 \quad[0, \infty)
$$

e) Is it possible that there is another answer to part d? Explain.

$$
\begin{aligned}
& x \leq 0 \\
& \quad(-\infty, 0]
\end{aligned}
$$


$\qquad$

Example \#4
Given the $f(x)=(x+2)^{2}-4$
Restrict the domain of $f(x)$ so that its inverse is a function.


$$
x \leq-2
$$$r$

$x \geq-2$
$\qquad$

We need to be able to write the equation of the inverse of a function.

1) $\qquad$ Rewrite $f(x)$ as $y$.
2) Switch $x$ and $y$
3) $\qquad$

Example \#5
Determine the equation of the inverse of the following function: $f(x)=2 x+8$

$$
\begin{aligned}
& y=2 x+8 \\
& x=2 y+8 \\
& x-8=2 y \\
& \frac{x-8}{2}=y \\
& \frac{x}{2}-4=y \\
& \frac{x}{2}-4=f^{-1}(x)
\end{aligned}
$$

Example \#6
Determine the equation of the inverse of the following function: $f(x)=x^{2}-4$

$$
\begin{aligned}
& y=x^{2}-4 \\
& x=y^{2}-4 \\
& x+4=y^{2} \\
& \pm \sqrt{x+4}=y
\end{aligned}
$$

$\qquad$

We can prove functions are inverses of each other, other than just graphically. To prove that two functions are inverses of each other, we must show this algebraically.

If $f(x)$ is the inverse of $g(x)$, then $f(g(x))=x$

Example \#7
Show that $f(x)=3 x-5$ and $g(x)=\frac{x+5}{3}$ are inverses of each other.

$$
\begin{aligned}
& f(g(x)) \\
& f\left(\frac{x+5}{3}\right)=3\left(\frac{x+5}{3}\right)-5 \\
&=x+5-5
\end{aligned}
$$

$$
f(x) \text { and } g(x)
$$ are inverses of each other.

Example \#8
Show that $f(x)=x-4$ and $g(x)=x+4$ are inverses of each other.

$$
f(g(x))=(x+4)-4
$$

Example \#9
Show that $f(x)=\frac{x-2}{2}$ and $g(x)=2 x+2$ are inverses of each other.

$$
\begin{aligned}
f(g(x)) & =\frac{(2 x+2)-2}{2} \\
& =\frac{2 x}{\not 2}
\end{aligned}
$$

