1	Practice – 1.1 & 1.2
1. th	Describe, in words, the transformation performed on the graph of $y = f(x)$ to obtain e graph of $y = f(x - 2)$. Shift right Quarts.
	horizontal translation à units right
2.	Represent a translation of 2 units to the left in mapping notation $(x, y) \rightarrow (x - y)$
3.	How is the graph of $y = f(x)$ related to the graph of $y = f(x) + k$ where $k > 0$?
	y=fcx)+k is shifted up.
4. gra	State the vertical and horizontal transformations, in words , necessary to obtain the aph of $y = 2f(x + 3)$ from the original graph of $y = f(x)$.
V	ertical stretch by a factor of 2.
h	orizontal translation 3 units left
5.	The function $y = f(x)$ is translated 3 units to the left and 2 units down. Represent
the	ese translations as a function of $y = f(x)$. $y = f(x+3) - 2$
6. the	The function $y = f(x)$ is translated 8 units to the right and 4 units down. Represent ese translations using mapping notation. $(\times \downarrow \downarrow) \rightarrow (\times \downarrow \&) \downarrow - `$
7. X	One root of a function $y = f(x)$ is 5. What must be a root of $y = 2f(x - 4)$? $(x_1 y) \rightarrow (x + 4, y)$ $(x_1 y) \rightarrow (x + 4, y)$ $(x_2 y) \rightarrow (x + 4, y)$ $(x_1 y) \rightarrow (x + 4, y)$
8.	If a point on the graph of $y = f(x)$ is $(5, \frac{1}{3})$, then what point must be on the graph of
<i>y</i> =	$=2f(x+1)? \xrightarrow{(\times, \vee,)} (\times -1, \mathbb{Z}_{\mathcal{Y}})$
1	$(5,\frac{1}{3}) \rightarrow (4,\frac{2}{3})$
9. /	A point on the translated graph $y = \frac{1}{2}f(x-3)$ is (-3,2). What must be a point on the
-11-	-1

-f(x)

Bael

MPC40S

Date:

11. The graph of y = f(x) underwent the mapping $(x, y) \rightarrow (2x, \frac{1}{2}y)$. Explain what

would happen to the y-values on the transformed graph. The y values would be compressed by a

factor of 3 of the yvalues would by stretched by a factor of $\frac{1}{3}$ 12. The graph of y = f(x) underwent a transformation that resulted in the graph of $y = \frac{1}{2}f(3x)$. Explain what happened to the x-values on the transformed graph. The x values would be compressed by a factor

of 3. (Or) The x values would be stretched by a factor of 1/3 13. Represent a reflection over the y-axis as a mapping $(\kappa_1 \gamma) \rightarrow (-\kappa_1 \gamma)$

14. What special name is given to an ordered pair that maps onto itself? (i.e. is not affected by the transformation.) Invariant point

15. The graph of y = f(x) is vertically stretched by a factor of 4. Represent this stretch in terms of y = f(x). y = 4f(x)

16. Describe, in words, how you would obtain the graph of y = -5f(x) from the graph of y = f(x). Reflect over the x axis

stretch vertically by a factor of 5

> a reflection over y-axis

17. Describe, in words, how the graph of y = f(x) is transformed to the graph of y = f(-4x).Reflect us over the y-axis. Compress horizontally by a factor of 4 (stretch horizontally by a factor of 4)

-> horizontal stretch (compression 19. The graph of y = f(x) undergoes a transformation and results in the new function y = -2f(5x). The transformed graph contains the ordered pair (-3,8). What ordered pair must be on the original graph? (-15, -4)

18. What transformation would map the y-intercept of a graph onto itself?

(017)

(sx, - 7

note

BACKWARDS