\qquad
Practice - 1.1 \& 1.2

1. Describe, in words, the transformation performed on the graph of $y=f(x)$ to obtain the graph of $y=f(x-2)$.

Shift right 2 units
horizontal translation 2 units right
2. Represent a translation of 2 units to the left in mapping notation \qquad $(x, y) \rightarrow(x-2, y)$
3. How is the graph of $y=f(x)$ related to the graph of $y=f(x)+k$ where $k>0$?

$$
y=f(x)+k \text { is shifted } y \text {. }
$$

4. State the vertical and horizontal transformations, in words, necessary to obtain the graph of $y=2 f(x+3)$ from the original graph of $y=f(x)$.
Vertical stretch by a factor of 2. horizontal translation 3 units left
5. The function $y=f(x)$ is translated 3 units to the left and 2 units down. Represent these translations as a function of $y=f(x) . \quad y=f(x+3)-2$
6. The function $y=f(x)$ is translated 8 units to the right and 4 units down. Represent these translations using mapping notation. $\left(x_{\imath} y\right) \rightarrow(x+8, y-4)$
7. One root of a function $y=f(x)$ is 5 . What must be a root of $y=2 f(x-4)$?

$$
\begin{array}{cll}
\downarrow & (x, y) \rightarrow(x+4, y) \\
\times \text { intercept } & (5,0) & (5,0) \rightarrow(9,0)
\end{array}
$$

8. If a point on the graph of $y=f(x)$ is $\left(5, \frac{1}{3}\right)$, then what point must be on the graph of

$$
y=2 f(x+1) ? \frac{(x, y) \rightarrow(x-1,2 y)}{\left(5, \frac{1}{3}\right) \rightarrow\left(4, \frac{2}{3}\right)}
$$

Backuatos!
9. A point on the translated graph $y=\frac{1}{2} f(x-3)$ is $(-3,2)$. What must be a point on the original graph $y=f(x) ? \quad(x-3,2 y) \quad(-6,4)$
10. What ordered pair would result if the ordered pair $(-3,5)$ was reflected over the x-axis? $(-3,-5)$

$$
-f(x)
$$

\qquad
11. The graph of $y=f(x)$ underwent the mapping $(x, y) \rightarrow\left(2 x, \frac{1}{3} y\right)$. Explain what would happen to the y-values on the transformed graph.

12. The graph of $y=f(x)$ underwent a transformation that resulted in the graph of $y=\frac{1}{2} f(3 x)$. Explain what happened to the x-values on the transformed graph.
of 3 . (or) The x valves would be stretched by a factor of $1 / 3$
13. Represent a reflection over the y-axis as a mapping

14. What special name is given to an ordered pair that maps onto itself? (i.e. is not affected by the transformation.) \qquad
15. The graph of $y=f(x)$ is vertically stretched by a factor of 4 . Represent this stretch in terms of $y=f(x)$. \qquad
16. Describe, in words, how you would obtain the graph of $y=-5 f(x)$ from the graph of $y=f(x)$.

Reflect over the x ans
stretch vertically by a factor of 5
17. Describe, in words, how the graph of $y=f(x)$ is transformed to the graph of $y=f(-4 x)$. Reflect over the y-axis.

$$
\begin{aligned}
& \text { Compress horizontally by a factor of } 4 \\
& \text { (stretch horizontally by a factor of } \frac{1}{4} \text {) }
\end{aligned}
$$

18. What transformation would map the y-intercept of a graph onto itself?

\rightarrow a reflection over y-axis \rightarrow horizontal stretch/compiesion
19. The graph of $y=f(x)$ undergoes a transformation and results in the new function $y=-2 f(5 x)$. The transformed graph contains the ordered pair $(-3,8)$. What ordered pair must be on the original graph?
Backwards!

$$
\left(5 x,-\frac{y}{2}\right) \quad(-15,-4)
$$

