\qquad
Chapter 1: TRANSFORMATIONS AND FUNCTIONS
1.1 - Horizontal and Vertical Translations

Transformation: A change on an original graph.
we deal with (1) Translations (2) reflections
\qquad Image points:
: Points on the original graph correspond to points on the transformed graph. The relationship between these sets of points can be called mapping.

$$
\left(x_{1} y\right) \rightarrow\left(x_{1}, y_{1}\right)
$$

A \qquad translation is one type of transformation. A translation can shift the graph of a function \qquad , down \qquad left \qquad A translation occurs when the location of a graph changes but the shape remains the same.
Vertical Translation

- A vertical translation shifts the graph \qquad Up or \qquad down
- Starting with the original function, $y=f(x)$

$$
y=f(x)+k
$$

-If $k>0$, the graph shifts \qquad
-If $k<0$, the graph shifts \qquad

- Each point (x, y) on the original function is mapped to
 on the transformed function.

$$
(x, y) \longrightarrow(x, y+k)
$$

Pg. \#5
\qquad

Example \#1
The graph of $f(x)=x^{2}$ is shown on the coordinate grid below.
Perform the following vertical translations on the same grid.
Describe each transformation in words and state the mapping notation. Label each graph.
a) $y=f(x)+4$

Vertical translation 4 Units up

$$
(\underline{x}, y) \rightarrow(x, y+4)
$$

$$
y=x^{2}+4
$$

b) $y=f(x)-7$
shift down 7
$(x, y) \rightarrow(x, y-7)$

$$
y=x^{2}-7
$$

\qquad

Horizontal Translation

- A horizontal translation shifts the graph

- Starting with the original function, $y=f(x)$

$$
y=f(x-h)
$$

-If $h>0$, the graph shifts \qquad right
-If $h<0$, the graph shifts \qquad left

$$
\downarrow y=f(x+4)
$$

- Each point (x, y) on the original function is mapped to \qquad the transformed function.

$$
(x, y) \rightarrow(x+h,
$$

\qquad

Example \#2

The graph of $f(x)=|x-2|$ is shown on the graph below.
Perform the following horizontal translations on the same grid.
Describe each transformation in words and state the mapping notation. Label each graph.
a) $y=f(x+6)$
b) $y=f(x-3)$
horizontal translation
3 units right
Shift left 6 units

\qquad

Example \#3
Use the given graph of $f(x)$ to sketch the following functions on the graphs provided.
Describe in words how you transformed each function and provide the mapping notation.

a) $g(x)=f(x-2)+3$

Shift right 2 and up 3.

b) $h(x)=f(x+1)-4$

left 1 and down 4 shift anghaty

$$
(x, y) \rightarrow(x-1, y-4)
$$

\qquad
\qquad

We must also be able to determine the equation of a function that has undergone a transformation.

Example \#4
The function $f(x)$ has been transformed into the function $g(x)$.
Determine the equation of the translated function in the form $y=f(x-h)+k$
a)

$f(x)$	\rightarrow	$g(x)$
	\rightarrow	

Answer: \qquad

Image Points: \qquad
\qquad

MPC40S
b)

Date: \qquad

Answer:

$$
g(x)=f(x-4)-9
$$

\qquad

Answer: \qquad $g(x)=$ $f(x+4)$

d)

Answer: \qquad

